{"title":"使用动态量化器对麦基本气动执行器进行长度控制","authors":"Yasuhiro Sugimoto, Keisuke Naniwa, Daisuke Nakanishi, Koichi Osuka","doi":"10.1186/s40648-024-00276-0","DOIUrl":null,"url":null,"abstract":"McKibben pneumatic actuators (MPAs) are soft actuators that exert tension by applying compressed air to expand a rubber tube. Although electro-pneumatic regulators can control air pressure, most are large and expensive. This study utilizes a dynamic quantizer to control the MPA with a small solenoid valve that can only open and close the valve instead of an electro-pneumatic regulator. A dynamic quantizer is one of the quantizers that converts continuous signals to discrete signals. Our previous study confirmed that tension control of MPA under isometric conditions could be realized using a dynamic quantizer. However, it is often necessary to control the length of the MPA as well as the tension of the MPA. This study implements a dynamic quantizer to control the length of the MPA with a small solenoid valve. Numerical simulations and experimental tests verify the effectiveness of the proposed method. The results of the numerical simulations and experimental tests confirmed that the length of the MPA can be controlled using the dynamic quantizer.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Length control of a McKibben pneumatic actuator using a dynamic quantizer\",\"authors\":\"Yasuhiro Sugimoto, Keisuke Naniwa, Daisuke Nakanishi, Koichi Osuka\",\"doi\":\"10.1186/s40648-024-00276-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"McKibben pneumatic actuators (MPAs) are soft actuators that exert tension by applying compressed air to expand a rubber tube. Although electro-pneumatic regulators can control air pressure, most are large and expensive. This study utilizes a dynamic quantizer to control the MPA with a small solenoid valve that can only open and close the valve instead of an electro-pneumatic regulator. A dynamic quantizer is one of the quantizers that converts continuous signals to discrete signals. Our previous study confirmed that tension control of MPA under isometric conditions could be realized using a dynamic quantizer. However, it is often necessary to control the length of the MPA as well as the tension of the MPA. This study implements a dynamic quantizer to control the length of the MPA with a small solenoid valve. Numerical simulations and experimental tests verify the effectiveness of the proposed method. The results of the numerical simulations and experimental tests confirmed that the length of the MPA can be controlled using the dynamic quantizer.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40648-024-00276-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-024-00276-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Length control of a McKibben pneumatic actuator using a dynamic quantizer
McKibben pneumatic actuators (MPAs) are soft actuators that exert tension by applying compressed air to expand a rubber tube. Although electro-pneumatic regulators can control air pressure, most are large and expensive. This study utilizes a dynamic quantizer to control the MPA with a small solenoid valve that can only open and close the valve instead of an electro-pneumatic regulator. A dynamic quantizer is one of the quantizers that converts continuous signals to discrete signals. Our previous study confirmed that tension control of MPA under isometric conditions could be realized using a dynamic quantizer. However, it is often necessary to control the length of the MPA as well as the tension of the MPA. This study implements a dynamic quantizer to control the length of the MPA with a small solenoid valve. Numerical simulations and experimental tests verify the effectiveness of the proposed method. The results of the numerical simulations and experimental tests confirmed that the length of the MPA can be controlled using the dynamic quantizer.
期刊介绍:
ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications