Yang Liu, Zixiang Cheng, Weiyao Chen, Chuanyin Wu, Jinfeng Chen, Yi Sui
{"title":"建立基因组编辑系统并组装近乎完整的黍基因组","authors":"Yang Liu, Zixiang Cheng, Weiyao Chen, Chuanyin Wu, Jinfeng Chen, Yi Sui","doi":"10.1111/jipb.13664","DOIUrl":null,"url":null,"abstract":"<p>The ancient crop broomcorn millet (<i>Panicum miliaceum</i> L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in <i>in vitro</i> culture. We established an <i>Agrobacterium tumefaciens</i>-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited <i>phytoene desaturase</i> (<i>PmPDS</i>), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13664","citationCount":"0","resultStr":"{\"title\":\"Establishment of genome-editing system and assembly of a near-complete genome in broomcorn millet\",\"authors\":\"Yang Liu, Zixiang Cheng, Weiyao Chen, Chuanyin Wu, Jinfeng Chen, Yi Sui\",\"doi\":\"10.1111/jipb.13664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ancient crop broomcorn millet (<i>Panicum miliaceum</i> L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in <i>in vitro</i> culture. We established an <i>Agrobacterium tumefaciens</i>-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited <i>phytoene desaturase</i> (<i>PmPDS</i>), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13664\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13664\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13664","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Establishment of genome-editing system and assembly of a near-complete genome in broomcorn millet
The ancient crop broomcorn millet (Panicum miliaceum L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in in vitro culture. We established an Agrobacterium tumefaciens-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited phytoene desaturase (PmPDS), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.