Nitin Singh, Prabin Kumar Panigrahi, Zuopeng Zhang, Sajjad M. Jasimuddin
{"title":"网络物理系统:文献计量分析","authors":"Nitin Singh, Prabin Kumar Panigrahi, Zuopeng Zhang, Sajjad M. Jasimuddin","doi":"10.1007/s10845-024-02380-9","DOIUrl":null,"url":null,"abstract":"<p>Recently, there is a significant growth in the use of the Cyber-Physical System (CPS). New technologies such as Internet of Things (IoT), Industry 4.0, and Analytics have become enablers of CPS implementation. Study of the development and application of CPS in the supply chain context is valuable to operations management and information systems research and practice; especially, a focus on IoT-enabled CPS in production/manufacturing is highly relevant. Knowledge about the research trends of the development and use of CPS for supply chain management supported by new innovations in IT is very limited in the extant literature. The aim of this research is to investigate the research trends of applying CPS in manufacturing. The study encompasses a scientometric analysis of research on deploying the CPS in production systems. Based on a systematic selection process, we collect a total of 245 articles from the Web of Science (WoS) database as the sample for analysis. Using appropriate software, we conduct bibliometric analyses of the sample articles that include citation, cocitation analysis, centrality co-occurrence analysis, and co-authorship analysis. From the bibliometric analysis, we discover major themes of CPS in manufacturing and their evolutions in the extant literature.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"49 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyber-physical systems: a bibliometric analysis of literature\",\"authors\":\"Nitin Singh, Prabin Kumar Panigrahi, Zuopeng Zhang, Sajjad M. Jasimuddin\",\"doi\":\"10.1007/s10845-024-02380-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, there is a significant growth in the use of the Cyber-Physical System (CPS). New technologies such as Internet of Things (IoT), Industry 4.0, and Analytics have become enablers of CPS implementation. Study of the development and application of CPS in the supply chain context is valuable to operations management and information systems research and practice; especially, a focus on IoT-enabled CPS in production/manufacturing is highly relevant. Knowledge about the research trends of the development and use of CPS for supply chain management supported by new innovations in IT is very limited in the extant literature. The aim of this research is to investigate the research trends of applying CPS in manufacturing. The study encompasses a scientometric analysis of research on deploying the CPS in production systems. Based on a systematic selection process, we collect a total of 245 articles from the Web of Science (WoS) database as the sample for analysis. Using appropriate software, we conduct bibliometric analyses of the sample articles that include citation, cocitation analysis, centrality co-occurrence analysis, and co-authorship analysis. From the bibliometric analysis, we discover major themes of CPS in manufacturing and their evolutions in the extant literature.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02380-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02380-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cyber-physical systems: a bibliometric analysis of literature
Recently, there is a significant growth in the use of the Cyber-Physical System (CPS). New technologies such as Internet of Things (IoT), Industry 4.0, and Analytics have become enablers of CPS implementation. Study of the development and application of CPS in the supply chain context is valuable to operations management and information systems research and practice; especially, a focus on IoT-enabled CPS in production/manufacturing is highly relevant. Knowledge about the research trends of the development and use of CPS for supply chain management supported by new innovations in IT is very limited in the extant literature. The aim of this research is to investigate the research trends of applying CPS in manufacturing. The study encompasses a scientometric analysis of research on deploying the CPS in production systems. Based on a systematic selection process, we collect a total of 245 articles from the Web of Science (WoS) database as the sample for analysis. Using appropriate software, we conduct bibliometric analyses of the sample articles that include citation, cocitation analysis, centrality co-occurrence analysis, and co-authorship analysis. From the bibliometric analysis, we discover major themes of CPS in manufacturing and their evolutions in the extant literature.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.