Li Du, Xiaoling Kang, Zhongfeng Zhu, Yu Ma, Haoran Guo, Jingman Li, Chuanyu Ding
{"title":"体细胞胚胎发生的小植株再生和蔷薇'约翰-肯尼迪'内源激素含量的变化","authors":"Li Du, Xiaoling Kang, Zhongfeng Zhu, Yu Ma, Haoran Guo, Jingman Li, Chuanyu Ding","doi":"10.1007/s11627-024-10426-z","DOIUrl":null,"url":null,"abstract":"<p>This study describes a plantlet regeneration protocol of somatic embryos in <i>Rosa</i> ‘John F. Kennedy’ (hybrid tea rose). Different somatic embryo sizes exhibited significant differences in the single bud (SB type) regeneration rate and multiple bud (MB type) regeneration rate. The highest single bud (SB type) regeneration rate (27.10%) was obtained from the large size (4 mm × 5 mm). The multiple bud regeneration rate was highest at 39.60% for the medium size (3 mm × 4 mm). Changes in the endogenous hormone content and ratios of various types of embryogenic cultures were clearly diverse: higher contents of abscisic acid (ABA) and indole-3-acetic acid (IAA) occurred in the SPC explant (single-piece cotyledonary somatic embryo) with a regenerated single bud (SB type). In a MW-type somatic embryo (milky-white single-piece-cotyledon explant), the gibberellic acid (GA<sub>3</sub>)/ABA ratio was the highest (1.807), and the IAA/GA<sub>3</sub> ratio was the lowest (0.902). However, the highest ratios of IAA/GA<sub>3</sub> (6.159) and the lowest ratios of GA<sub>3</sub>/ABA (0.383) appeared in SB-type cultures. Additionally, the highest IAA/ABA ratios (6.535) and higher ratios of GA<sub>3</sub>/ABA (1.729) were found in MB-type cultures. This indicated that ways to regulate plant cell totipotency in <i>Rosa</i> ‘John F. Kennedy’ somatic embryos differed between single bud (SB type) regeneration and multiple bud (MB type) regeneration. Finally, this study classified and summarized common intermediate materials in <i>in vitro</i> culture based on morphological characteristics and plantlet regeneration pathways.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":"15 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plantlet regeneration via somatic embryogenesis and changes in endogenous hormone content of Rosa ‘John F. Kennedy’\",\"authors\":\"Li Du, Xiaoling Kang, Zhongfeng Zhu, Yu Ma, Haoran Guo, Jingman Li, Chuanyu Ding\",\"doi\":\"10.1007/s11627-024-10426-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study describes a plantlet regeneration protocol of somatic embryos in <i>Rosa</i> ‘John F. Kennedy’ (hybrid tea rose). Different somatic embryo sizes exhibited significant differences in the single bud (SB type) regeneration rate and multiple bud (MB type) regeneration rate. The highest single bud (SB type) regeneration rate (27.10%) was obtained from the large size (4 mm × 5 mm). The multiple bud regeneration rate was highest at 39.60% for the medium size (3 mm × 4 mm). Changes in the endogenous hormone content and ratios of various types of embryogenic cultures were clearly diverse: higher contents of abscisic acid (ABA) and indole-3-acetic acid (IAA) occurred in the SPC explant (single-piece cotyledonary somatic embryo) with a regenerated single bud (SB type). In a MW-type somatic embryo (milky-white single-piece-cotyledon explant), the gibberellic acid (GA<sub>3</sub>)/ABA ratio was the highest (1.807), and the IAA/GA<sub>3</sub> ratio was the lowest (0.902). However, the highest ratios of IAA/GA<sub>3</sub> (6.159) and the lowest ratios of GA<sub>3</sub>/ABA (0.383) appeared in SB-type cultures. Additionally, the highest IAA/ABA ratios (6.535) and higher ratios of GA<sub>3</sub>/ABA (1.729) were found in MB-type cultures. This indicated that ways to regulate plant cell totipotency in <i>Rosa</i> ‘John F. Kennedy’ somatic embryos differed between single bud (SB type) regeneration and multiple bud (MB type) regeneration. Finally, this study classified and summarized common intermediate materials in <i>in vitro</i> culture based on morphological characteristics and plantlet regeneration pathways.</p>\",\"PeriodicalId\":13293,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology - Plant\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology - Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11627-024-10426-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology - Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11627-024-10426-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Plantlet regeneration via somatic embryogenesis and changes in endogenous hormone content of Rosa ‘John F. Kennedy’
This study describes a plantlet regeneration protocol of somatic embryos in Rosa ‘John F. Kennedy’ (hybrid tea rose). Different somatic embryo sizes exhibited significant differences in the single bud (SB type) regeneration rate and multiple bud (MB type) regeneration rate. The highest single bud (SB type) regeneration rate (27.10%) was obtained from the large size (4 mm × 5 mm). The multiple bud regeneration rate was highest at 39.60% for the medium size (3 mm × 4 mm). Changes in the endogenous hormone content and ratios of various types of embryogenic cultures were clearly diverse: higher contents of abscisic acid (ABA) and indole-3-acetic acid (IAA) occurred in the SPC explant (single-piece cotyledonary somatic embryo) with a regenerated single bud (SB type). In a MW-type somatic embryo (milky-white single-piece-cotyledon explant), the gibberellic acid (GA3)/ABA ratio was the highest (1.807), and the IAA/GA3 ratio was the lowest (0.902). However, the highest ratios of IAA/GA3 (6.159) and the lowest ratios of GA3/ABA (0.383) appeared in SB-type cultures. Additionally, the highest IAA/ABA ratios (6.535) and higher ratios of GA3/ABA (1.729) were found in MB-type cultures. This indicated that ways to regulate plant cell totipotency in Rosa ‘John F. Kennedy’ somatic embryos differed between single bud (SB type) regeneration and multiple bud (MB type) regeneration. Finally, this study classified and summarized common intermediate materials in in vitro culture based on morphological characteristics and plantlet regeneration pathways.
期刊介绍:
Founded in 1965, In Vitro Cellular & Developmental Biology - Plant is the only journal devoted solely to worldwide coverage of in vitro biology in plants. Its high-caliber original research and reviews make it required reading for anyone who needs comprehensive coverage of the latest developments and state-of-the-art research in plant cell and tissue culture and biotechnology from around the world.