Andrés Neyem;Luis A. González;Marcelo Mendoza;Juan Pablo Sandoval Alcocer;Leonardo Centellas;Carlos Paredes
{"title":"为软件毕业设计项目开发中的情境感知学习体验开发人工智能知识助手","authors":"Andrés Neyem;Luis A. González;Marcelo Mendoza;Juan Pablo Sandoval Alcocer;Leonardo Centellas;Carlos Paredes","doi":"10.1109/TLT.2024.3396735","DOIUrl":null,"url":null,"abstract":"Software assistants have significantly impacted software development for both practitioners and students, particularly in capstone projects. The effectiveness of these tools varies based on their knowledge sources; assistants with localized domain-specific knowledge may have limitations, while tools, such as ChatGPT, using broad datasets, might offer recommendations that do not always match the specific objectives of a capstone course. Addressing a gap in current educational technology, this article introduces an AI Knowledge Assistant specifically designed to overcome the limitations of the existing tools by enhancing the quality and relevance of large language models (LLMs). It achieves this through the innovative integration of contextual knowledge from a local “lessons learned” database tailored to the capstone course. We conducted a study with 150 students using the assistant during their capstone course. Integrated into the Kanban project tracking system, the assistant offered recommendations using different strategies: direct searches in the lessons learned database, direct queries to a generative pretrained transformers (GPT) model, query enrichment with lessons learned before submission to GPT and large language model meta AI (LLaMa) models, and query enhancement with Stack Overflow data before GPT processing. Survey results underscored a strong preference among students for direct LLM queries and those enriched with local repository insights, highlighting the assistant's practical value. Furthermore, our linguistic analysis conclusively demonstrated that texts generated by the LLM closely mirrored the linguistic standards and topical relevance of university course requirements. This alignment not only fosters a deeper understanding of course content but also significantly enhances the material's applicability to real-world scenarios.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1639-1654"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward an AI Knowledge Assistant for Context-Aware Learning Experiences in Software Capstone Project Development\",\"authors\":\"Andrés Neyem;Luis A. González;Marcelo Mendoza;Juan Pablo Sandoval Alcocer;Leonardo Centellas;Carlos Paredes\",\"doi\":\"10.1109/TLT.2024.3396735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software assistants have significantly impacted software development for both practitioners and students, particularly in capstone projects. The effectiveness of these tools varies based on their knowledge sources; assistants with localized domain-specific knowledge may have limitations, while tools, such as ChatGPT, using broad datasets, might offer recommendations that do not always match the specific objectives of a capstone course. Addressing a gap in current educational technology, this article introduces an AI Knowledge Assistant specifically designed to overcome the limitations of the existing tools by enhancing the quality and relevance of large language models (LLMs). It achieves this through the innovative integration of contextual knowledge from a local “lessons learned” database tailored to the capstone course. We conducted a study with 150 students using the assistant during their capstone course. Integrated into the Kanban project tracking system, the assistant offered recommendations using different strategies: direct searches in the lessons learned database, direct queries to a generative pretrained transformers (GPT) model, query enrichment with lessons learned before submission to GPT and large language model meta AI (LLaMa) models, and query enhancement with Stack Overflow data before GPT processing. Survey results underscored a strong preference among students for direct LLM queries and those enriched with local repository insights, highlighting the assistant's practical value. Furthermore, our linguistic analysis conclusively demonstrated that texts generated by the LLM closely mirrored the linguistic standards and topical relevance of university course requirements. This alignment not only fosters a deeper understanding of course content but also significantly enhances the material's applicability to real-world scenarios.\",\"PeriodicalId\":49191,\"journal\":{\"name\":\"IEEE Transactions on Learning Technologies\",\"volume\":\"17 \",\"pages\":\"1639-1654\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Learning Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10518103/\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10518103/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Toward an AI Knowledge Assistant for Context-Aware Learning Experiences in Software Capstone Project Development
Software assistants have significantly impacted software development for both practitioners and students, particularly in capstone projects. The effectiveness of these tools varies based on their knowledge sources; assistants with localized domain-specific knowledge may have limitations, while tools, such as ChatGPT, using broad datasets, might offer recommendations that do not always match the specific objectives of a capstone course. Addressing a gap in current educational technology, this article introduces an AI Knowledge Assistant specifically designed to overcome the limitations of the existing tools by enhancing the quality and relevance of large language models (LLMs). It achieves this through the innovative integration of contextual knowledge from a local “lessons learned” database tailored to the capstone course. We conducted a study with 150 students using the assistant during their capstone course. Integrated into the Kanban project tracking system, the assistant offered recommendations using different strategies: direct searches in the lessons learned database, direct queries to a generative pretrained transformers (GPT) model, query enrichment with lessons learned before submission to GPT and large language model meta AI (LLaMa) models, and query enhancement with Stack Overflow data before GPT processing. Survey results underscored a strong preference among students for direct LLM queries and those enriched with local repository insights, highlighting the assistant's practical value. Furthermore, our linguistic analysis conclusively demonstrated that texts generated by the LLM closely mirrored the linguistic standards and topical relevance of university course requirements. This alignment not only fosters a deeper understanding of course content but also significantly enhances the material's applicability to real-world scenarios.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.