具有猎物-猎物和双贝丁顿-德安吉利斯功能响应的非线性交叉扩散捕食者-猎物模型的时空模式和全局分岔

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Demou Luo , Qiru Wang
{"title":"具有猎物-猎物和双贝丁顿-德安吉利斯功能响应的非线性交叉扩散捕食者-猎物模型的时空模式和全局分岔","authors":"Demou Luo ,&nbsp;Qiru Wang","doi":"10.1016/j.nonrwa.2024.104133","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses\",\"authors\":\"Demou Luo ,&nbsp;Qiru Wang\",\"doi\":\"10.1016/j.nonrwa.2024.104133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000737\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000737","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究具有猎物-税率和双贝丁顿-德安吉利函数反应的非线性交叉扩散捕食者-猎物模型的时空模式。首先,利用方便易用的 Crandall-Rabinowitz 分岔理论作为分析方法,得到了正稳态的时空模式。然后,将交叉扩散系数 d1 视为分岔参数,推导出相应非线性交叉扩散模型的分岔定理。此外,通过应用频谱理论、简单特征值的扰动和线性化稳定性,我们发现分岔解在适当条件下在分岔点附近具有局部稳定性。这些理论结果意味着交叉扩散机制可以在某些情况下为猎物和捕食者创造共存环境。最后,我们提出了一个数值实例来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses

The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient d1 as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信