{"title":"具有猎物-猎物和双贝丁顿-德安吉利斯功能响应的非线性交叉扩散捕食者-猎物模型的时空模式和全局分岔","authors":"Demou Luo , Qiru Wang","doi":"10.1016/j.nonrwa.2024.104133","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses\",\"authors\":\"Demou Luo , Qiru Wang\",\"doi\":\"10.1016/j.nonrwa.2024.104133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000737\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000737","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses
The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.