通过系统工程策略在莫巴拉链霉菌中高效合成转谷氨酰胺酶

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Fang Yuan , Guoying Li , Zilong Li , Mingming Li , Xiaobo Liu , Haiquan Yang , Xiaobin Yu
{"title":"通过系统工程策略在莫巴拉链霉菌中高效合成转谷氨酰胺酶","authors":"Fang Yuan ,&nbsp;Guoying Li ,&nbsp;Zilong Li ,&nbsp;Mingming Li ,&nbsp;Xiaobo Liu ,&nbsp;Haiquan Yang ,&nbsp;Xiaobin Yu","doi":"10.1016/j.crfs.2024.100756","DOIUrl":null,"url":null,"abstract":"<div><p>Transglutaminases (TGases) have been widely used in food, pharmaceutical, biotechnology, and other industries because of their ability to catalyze deamidation, acyl transfer, and crosslinking reactions between Ƴ-carboxamide groups of peptides or protein-bound glutamine and the Ɛ-amino group of lysine. In this study, we demonstrated an efficient systematic engineering strategy to enhance the synthesis of TGase in a recombinant <em>Streptomyces mobaraensis</em> smL2020 strain in a 1000-L fermentor. Briefly, the enzymatic properties of the TGase TG<sub>L2020</sub> from <em>S</em>. <em>mobaraensis</em> smL2020 and TGase TG<sub>LD</sub> from <em>S</em>. <em>mobaraensis</em> smLD were compared to obtain the TGase TG<sub>LD</sub> with perfected characteristics for heterologous expression in a recombinant <em>S</em>. <em>mobaraensis</em> smL2020ΔTG without the gene <em>tg</em><sub><em>L 2020</em></sub>. Through multiple engineering strategies, including promoter engineering, optimizing the signal peptides and recombination sites, and increasing copies of the expression cassettes, the final TG<sub>LD</sub> activity in the recombinant <em>S. mobaraensis</em> smL2020ΔTG: (P<sub><em>L2020</em></sub>-<em>sp</em><sub><em>L2020</em></sub>-<em>protg</em><sub><em>LD</em></sub>-<em>tg</em><sub><em>LD</em></sub><em>)</em><sub><em>2</em></sub> (<em>tg</em><sub><em>L2020</em></sub> <em>and</em> BT1) reached 56.43 U/mL and 63.18 U/mL in shake flask and 1000-L fermentor, respectively, which was the highest reported to date. With the improvement of expression level, the application scope of TG<sub>LD</sub> in the food industry will continue to expand. Moreover, the genetic stability of the recombinant strain maintained at more than 20 generations. These findings proved the feasibility of multiple systematic engineering strategies in synthetic biology and provided an emerging solution to improve biosynthesis of industrial enzymes.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"8 ","pages":"Article 100756"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927124000820/pdfft?md5=273219913f3f5eb02edd26be14542d45&pid=1-s2.0-S2665927124000820-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies\",\"authors\":\"Fang Yuan ,&nbsp;Guoying Li ,&nbsp;Zilong Li ,&nbsp;Mingming Li ,&nbsp;Xiaobo Liu ,&nbsp;Haiquan Yang ,&nbsp;Xiaobin Yu\",\"doi\":\"10.1016/j.crfs.2024.100756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transglutaminases (TGases) have been widely used in food, pharmaceutical, biotechnology, and other industries because of their ability to catalyze deamidation, acyl transfer, and crosslinking reactions between Ƴ-carboxamide groups of peptides or protein-bound glutamine and the Ɛ-amino group of lysine. In this study, we demonstrated an efficient systematic engineering strategy to enhance the synthesis of TGase in a recombinant <em>Streptomyces mobaraensis</em> smL2020 strain in a 1000-L fermentor. Briefly, the enzymatic properties of the TGase TG<sub>L2020</sub> from <em>S</em>. <em>mobaraensis</em> smL2020 and TGase TG<sub>LD</sub> from <em>S</em>. <em>mobaraensis</em> smLD were compared to obtain the TGase TG<sub>LD</sub> with perfected characteristics for heterologous expression in a recombinant <em>S</em>. <em>mobaraensis</em> smL2020ΔTG without the gene <em>tg</em><sub><em>L 2020</em></sub>. Through multiple engineering strategies, including promoter engineering, optimizing the signal peptides and recombination sites, and increasing copies of the expression cassettes, the final TG<sub>LD</sub> activity in the recombinant <em>S. mobaraensis</em> smL2020ΔTG: (P<sub><em>L2020</em></sub>-<em>sp</em><sub><em>L2020</em></sub>-<em>protg</em><sub><em>LD</em></sub>-<em>tg</em><sub><em>LD</em></sub><em>)</em><sub><em>2</em></sub> (<em>tg</em><sub><em>L2020</em></sub> <em>and</em> BT1) reached 56.43 U/mL and 63.18 U/mL in shake flask and 1000-L fermentor, respectively, which was the highest reported to date. With the improvement of expression level, the application scope of TG<sub>LD</sub> in the food industry will continue to expand. Moreover, the genetic stability of the recombinant strain maintained at more than 20 generations. These findings proved the feasibility of multiple systematic engineering strategies in synthetic biology and provided an emerging solution to improve biosynthesis of industrial enzymes.</p></div>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"8 \",\"pages\":\"Article 100756\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665927124000820/pdfft?md5=273219913f3f5eb02edd26be14542d45&pid=1-s2.0-S2665927124000820-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665927124000820\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124000820","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转谷氨酰胺酶(TGase)能够催化肽的Ƴ-羧酰胺基团或蛋白质结合的谷氨酰胺基团与赖氨酸的Ɛ-氨基基团之间的脱酰胺、酰基转移和交联反应,因此被广泛应用于食品、制药、生物技术和其他行业。在本研究中,我们展示了一种高效的系统工程策略,可在 1000 升发酵罐中提高重组莫巴拉链霉菌(Streptomyces mobaraensis smL2020)菌株合成 TG 酶的能力。简而言之,通过比较 S. mobaraensis smL2020 的 TGL2020 酶和 S. mobaraensis smLD 的 TGLD 酶的酶学特性,获得了具有完美特性的 TGLD 酶,并在不含 tgL 2020 基因的重组 S. mobaraensis smL2020ΔTG 中进行异源表达。通过启动子工程、优化信号肽和重组位点、增加表达盒拷贝等多种工程策略,重组 S. mobaraensis smL2020ΔTG: (PL2020-spL2020-protgLD-tgLD)2 (tgL2020 和 BT1)的 TGLD 活性在摇瓶和 1000-L 发酵罐中分别达到 56.43 U/mL 和 63.18 U/mL,为目前报道的最高值。随着表达水平的提高,TGLD 在食品工业中的应用范围将不断扩大。此外,重组菌株的遗传稳定性保持在 20 代以上。这些发现证明了合成生物学中多种系统工程策略的可行性,并为改善工业酶的生物合成提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies

Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies

Transglutaminases (TGases) have been widely used in food, pharmaceutical, biotechnology, and other industries because of their ability to catalyze deamidation, acyl transfer, and crosslinking reactions between Ƴ-carboxamide groups of peptides or protein-bound glutamine and the Ɛ-amino group of lysine. In this study, we demonstrated an efficient systematic engineering strategy to enhance the synthesis of TGase in a recombinant Streptomyces mobaraensis smL2020 strain in a 1000-L fermentor. Briefly, the enzymatic properties of the TGase TGL2020 from S. mobaraensis smL2020 and TGase TGLD from S. mobaraensis smLD were compared to obtain the TGase TGLD with perfected characteristics for heterologous expression in a recombinant S. mobaraensis smL2020ΔTG without the gene tgL 2020. Through multiple engineering strategies, including promoter engineering, optimizing the signal peptides and recombination sites, and increasing copies of the expression cassettes, the final TGLD activity in the recombinant S. mobaraensis smL2020ΔTG: (PL2020-spL2020-protgLD-tgLD)2 (tgL2020 and BT1) reached 56.43 U/mL and 63.18 U/mL in shake flask and 1000-L fermentor, respectively, which was the highest reported to date. With the improvement of expression level, the application scope of TGLD in the food industry will continue to expand. Moreover, the genetic stability of the recombinant strain maintained at more than 20 generations. These findings proved the feasibility of multiple systematic engineering strategies in synthetic biology and provided an emerging solution to improve biosynthesis of industrial enzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信