F. Rodríguez , J.M. Díaz-Báñez , R. Fabila-Monroy , L.E. Caraballo , J. Capitán
{"title":"利用高效转角分配实现多机器人无碰撞路径规划","authors":"F. Rodríguez , J.M. Díaz-Báñez , R. Fabila-Monroy , L.E. Caraballo , J. Capitán","doi":"10.1016/j.robot.2024.104698","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to avoid collisions with moving robots is critical in many applications. Moreover, if the robots have limited battery life, the goal is not only to avoid collisions but also to design efficient trajectories in terms of energy consumption and total mission time. This paper proposes a novel strategy for assigning turn angles for collision-free path planning in scenarios where a small team of robots cooperate in a certain mission. The algorithm allows each robot to reach a predetermined destination safely. It establishes consecutive, short time intervals, and at each interval, possible conflicts are solved centrally in an optimal manner. This is done by keeping constant speeds but generating a discrete set of possible directions for each robot, and solving efficiently the turn-angle allocation for a collision-free path that minimizes the path deviation from the shortest one. Due to the discretization, the final paths are not optimal, but the system can react to possible failures during execution, as conflicts are resolved at each time interval. Computational results and <em>Software-In-The-Loop</em> simulations are presented in order to evaluate the proposed algorithm. A comparison with a state-of-the-art approach shows that our algorithm is more energy-efficient and achieves lower mission completion time.</p></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collision-free path planning for multiple robots using efficient turn-angle assignment\",\"authors\":\"F. Rodríguez , J.M. Díaz-Báñez , R. Fabila-Monroy , L.E. Caraballo , J. Capitán\",\"doi\":\"10.1016/j.robot.2024.104698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability to avoid collisions with moving robots is critical in many applications. Moreover, if the robots have limited battery life, the goal is not only to avoid collisions but also to design efficient trajectories in terms of energy consumption and total mission time. This paper proposes a novel strategy for assigning turn angles for collision-free path planning in scenarios where a small team of robots cooperate in a certain mission. The algorithm allows each robot to reach a predetermined destination safely. It establishes consecutive, short time intervals, and at each interval, possible conflicts are solved centrally in an optimal manner. This is done by keeping constant speeds but generating a discrete set of possible directions for each robot, and solving efficiently the turn-angle allocation for a collision-free path that minimizes the path deviation from the shortest one. Due to the discretization, the final paths are not optimal, but the system can react to possible failures during execution, as conflicts are resolved at each time interval. Computational results and <em>Software-In-The-Loop</em> simulations are presented in order to evaluate the proposed algorithm. A comparison with a state-of-the-art approach shows that our algorithm is more energy-efficient and achieves lower mission completion time.</p></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024000812\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024000812","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Collision-free path planning for multiple robots using efficient turn-angle assignment
The ability to avoid collisions with moving robots is critical in many applications. Moreover, if the robots have limited battery life, the goal is not only to avoid collisions but also to design efficient trajectories in terms of energy consumption and total mission time. This paper proposes a novel strategy for assigning turn angles for collision-free path planning in scenarios where a small team of robots cooperate in a certain mission. The algorithm allows each robot to reach a predetermined destination safely. It establishes consecutive, short time intervals, and at each interval, possible conflicts are solved centrally in an optimal manner. This is done by keeping constant speeds but generating a discrete set of possible directions for each robot, and solving efficiently the turn-angle allocation for a collision-free path that minimizes the path deviation from the shortest one. Due to the discretization, the final paths are not optimal, but the system can react to possible failures during execution, as conflicts are resolved at each time interval. Computational results and Software-In-The-Loop simulations are presented in order to evaluate the proposed algorithm. A comparison with a state-of-the-art approach shows that our algorithm is more energy-efficient and achieves lower mission completion time.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.