Fang Wang , Hong Yang , Wujie Chen , Lei Ruan , Tingting Jiang , Lei Cheng , Haitao Jiang , Min Fang
{"title":"利用治疗前 CT 放射组学和非小细胞肺癌临床病理特征的组合模型预测新辅助化疗免疫疗法后的主要病理反应","authors":"Fang Wang , Hong Yang , Wujie Chen , Lei Ruan , Tingting Jiang , Lei Cheng , Haitao Jiang , Min Fang","doi":"10.1016/j.currproblcancer.2024.101098","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To investigate the relationship between clinical pathological characteristics, pretreatment CT radiomics, and major pathologic response (MPR) of non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy, and to establish a combined model to predict the major pathologic response of neoadjuvant chemoimmunotherapy.</p></div><div><h3>Methods</h3><p>A retrospective study of 211 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy and surgical treatment from January 2019 to April 2021 was conducted. The patients were divided into two groups: the MPR group and the non-MPR group. Pre-treatment CT images were segmented using ITK SNAP software to extract radiomics features using Python software. Then a radiomics model, a clinical model, and a combined model were constructed and validated using a receiver operating characteristic (ROC) curve. Finally, Delong's test was used to compare the three models.</p></div><div><h3>Results</h3><p>The radiomics model achieved an AUC of 0.70 (95 % CI: 0.62-0.78) in the training group and 0.60 (95 % CI: 0.45-0.76) in the validation group. RECIST assessment results were screened from all clinical characteristics as independent factors for MPR with multivariate logistic regression analysis. The AUC of the clinical model for predicting MPR was 0.66 (95 % CI: 0.59-0.73) in the training group and 0.77 (95 % CI: 0.66-0.87) in the validation group. The combined model with combined radiomics and clinicopathological characteristics achieved an AUC was 0.76 (95 % CI: 0.68-0.84) in the training group, and 0.80 (95 % CI: 0.67-0.92) in the validation group. Delong's test showed that the AUC of the combined model was significantly higher than that of the radiomics model alone in both the training group (P = 0.0067) and the validation group (P = 0.0009).The calibration curve showed good agreement between predicted and actual MPR. Clinical decision curve analysis showed that the combined model was superior to radiomics alone.</p></div><div><h3>Conclusions</h3><p>Radiomics model can predict MPR in NSCLC after neoadjuvant chemoimmunotherapy with similar accuracy to RECIST assessment criteria. The combined model based on pretreatment CT radiomics and clinicopathological features showed better predictive power than independent radiomics model or independent clinicopathological features, suggesting that it may be more useful for guiding personalized neoadjuvant chemoimmunotherapy treatment strategies.</p></div>","PeriodicalId":55193,"journal":{"name":"Current Problems in Cancer","volume":"50 ","pages":"Article 101098"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy\",\"authors\":\"Fang Wang , Hong Yang , Wujie Chen , Lei Ruan , Tingting Jiang , Lei Cheng , Haitao Jiang , Min Fang\",\"doi\":\"10.1016/j.currproblcancer.2024.101098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To investigate the relationship between clinical pathological characteristics, pretreatment CT radiomics, and major pathologic response (MPR) of non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy, and to establish a combined model to predict the major pathologic response of neoadjuvant chemoimmunotherapy.</p></div><div><h3>Methods</h3><p>A retrospective study of 211 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy and surgical treatment from January 2019 to April 2021 was conducted. The patients were divided into two groups: the MPR group and the non-MPR group. Pre-treatment CT images were segmented using ITK SNAP software to extract radiomics features using Python software. Then a radiomics model, a clinical model, and a combined model were constructed and validated using a receiver operating characteristic (ROC) curve. Finally, Delong's test was used to compare the three models.</p></div><div><h3>Results</h3><p>The radiomics model achieved an AUC of 0.70 (95 % CI: 0.62-0.78) in the training group and 0.60 (95 % CI: 0.45-0.76) in the validation group. RECIST assessment results were screened from all clinical characteristics as independent factors for MPR with multivariate logistic regression analysis. The AUC of the clinical model for predicting MPR was 0.66 (95 % CI: 0.59-0.73) in the training group and 0.77 (95 % CI: 0.66-0.87) in the validation group. The combined model with combined radiomics and clinicopathological characteristics achieved an AUC was 0.76 (95 % CI: 0.68-0.84) in the training group, and 0.80 (95 % CI: 0.67-0.92) in the validation group. Delong's test showed that the AUC of the combined model was significantly higher than that of the radiomics model alone in both the training group (P = 0.0067) and the validation group (P = 0.0009).The calibration curve showed good agreement between predicted and actual MPR. Clinical decision curve analysis showed that the combined model was superior to radiomics alone.</p></div><div><h3>Conclusions</h3><p>Radiomics model can predict MPR in NSCLC after neoadjuvant chemoimmunotherapy with similar accuracy to RECIST assessment criteria. The combined model based on pretreatment CT radiomics and clinicopathological features showed better predictive power than independent radiomics model or independent clinicopathological features, suggesting that it may be more useful for guiding personalized neoadjuvant chemoimmunotherapy treatment strategies.</p></div>\",\"PeriodicalId\":55193,\"journal\":{\"name\":\"Current Problems in Cancer\",\"volume\":\"50 \",\"pages\":\"Article 101098\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Problems in Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147027224000394\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147027224000394","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy
Objective
To investigate the relationship between clinical pathological characteristics, pretreatment CT radiomics, and major pathologic response (MPR) of non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy, and to establish a combined model to predict the major pathologic response of neoadjuvant chemoimmunotherapy.
Methods
A retrospective study of 211 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy and surgical treatment from January 2019 to April 2021 was conducted. The patients were divided into two groups: the MPR group and the non-MPR group. Pre-treatment CT images were segmented using ITK SNAP software to extract radiomics features using Python software. Then a radiomics model, a clinical model, and a combined model were constructed and validated using a receiver operating characteristic (ROC) curve. Finally, Delong's test was used to compare the three models.
Results
The radiomics model achieved an AUC of 0.70 (95 % CI: 0.62-0.78) in the training group and 0.60 (95 % CI: 0.45-0.76) in the validation group. RECIST assessment results were screened from all clinical characteristics as independent factors for MPR with multivariate logistic regression analysis. The AUC of the clinical model for predicting MPR was 0.66 (95 % CI: 0.59-0.73) in the training group and 0.77 (95 % CI: 0.66-0.87) in the validation group. The combined model with combined radiomics and clinicopathological characteristics achieved an AUC was 0.76 (95 % CI: 0.68-0.84) in the training group, and 0.80 (95 % CI: 0.67-0.92) in the validation group. Delong's test showed that the AUC of the combined model was significantly higher than that of the radiomics model alone in both the training group (P = 0.0067) and the validation group (P = 0.0009).The calibration curve showed good agreement between predicted and actual MPR. Clinical decision curve analysis showed that the combined model was superior to radiomics alone.
Conclusions
Radiomics model can predict MPR in NSCLC after neoadjuvant chemoimmunotherapy with similar accuracy to RECIST assessment criteria. The combined model based on pretreatment CT radiomics and clinicopathological features showed better predictive power than independent radiomics model or independent clinicopathological features, suggesting that it may be more useful for guiding personalized neoadjuvant chemoimmunotherapy treatment strategies.
期刊介绍:
Current Problems in Cancer seeks to promote and disseminate innovative, transformative, and impactful data on patient-oriented cancer research and clinical care. Specifically, the journal''s scope is focused on reporting the results of well-designed cancer studies that influence/alter practice or identify new directions in clinical cancer research. These studies can include novel therapeutic approaches, new strategies for early diagnosis, cancer clinical trials, and supportive care, among others. Papers that focus solely on laboratory-based or basic science research are discouraged. The journal''s format also allows, on occasion, for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering articles that present dynamic material that influences the oncology field.