{"title":"通过等转化动力学分析评估二元和三元生物可降解聚合物混合物的热稳定性","authors":"Tibor Dubaj , Stefano Vecchio Ciprioti , Jacopo Tirillò , Fabrizio Sarasini","doi":"10.1016/j.tca.2024.179761","DOIUrl":null,"url":null,"abstract":"<div><p>Here we report on kinetic analysis of thermal degradation of polymer blends based on incremental isoconversional method coupled with mathematical deconvolution of thermogravimetric curves based on Fraser–Suzuki peak function. The measured kinetic envelope was decomposed into contributions approximately corresponding to degradation of each constituent of a polymer blend. Kinetic parameters from isoconversional analysis were further used for estimating the effect of blending on thermal stability of the constituents. Compared to routinely used parameters such as degradation onset temperature or DTG-peak temperature, the deconvolution analysis allows to determine stability of all components in a mixture regardless of their relative content. Here we also show that deconvolution analysis can be carried out directly on integral <em>α</em>(<em>T</em>) curves, thus bypassing the work with differential data <em>dα</em>/<em>dt</em>. Isoconversional analysis of deconvoluted <em>α</em>(<em>T</em>) curves allows to calculate various parameters for assessing the potentially accelerating or inhibiting effect on thermal degradation, for example, by means of decomposition half-time <em>t</em><sub>0.5</sub>. The results can be made more robust by utilizing relative criteria for stability such as <em>t</em><sub>0.5</sub>(blend)/<em>t</em><sub>0.5</sub>(neat polymer). Using this approach, detrimental effect of PHBV and PBAT on thermal stability of PLA above 300 °C was confirmed. On the other hand, stability of PHBV in both binary and ternary mixtures was improved compared to neat polymer.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004060312400100X/pdfft?md5=f59d7858752d1210a5cf050455324243&pid=1-s2.0-S004060312400100X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermal stability of binary and ternary biodegradable polymer blends assessed by isoconversional kinetic analysis\",\"authors\":\"Tibor Dubaj , Stefano Vecchio Ciprioti , Jacopo Tirillò , Fabrizio Sarasini\",\"doi\":\"10.1016/j.tca.2024.179761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here we report on kinetic analysis of thermal degradation of polymer blends based on incremental isoconversional method coupled with mathematical deconvolution of thermogravimetric curves based on Fraser–Suzuki peak function. The measured kinetic envelope was decomposed into contributions approximately corresponding to degradation of each constituent of a polymer blend. Kinetic parameters from isoconversional analysis were further used for estimating the effect of blending on thermal stability of the constituents. Compared to routinely used parameters such as degradation onset temperature or DTG-peak temperature, the deconvolution analysis allows to determine stability of all components in a mixture regardless of their relative content. Here we also show that deconvolution analysis can be carried out directly on integral <em>α</em>(<em>T</em>) curves, thus bypassing the work with differential data <em>dα</em>/<em>dt</em>. Isoconversional analysis of deconvoluted <em>α</em>(<em>T</em>) curves allows to calculate various parameters for assessing the potentially accelerating or inhibiting effect on thermal degradation, for example, by means of decomposition half-time <em>t</em><sub>0.5</sub>. The results can be made more robust by utilizing relative criteria for stability such as <em>t</em><sub>0.5</sub>(blend)/<em>t</em><sub>0.5</sub>(neat polymer). Using this approach, detrimental effect of PHBV and PBAT on thermal stability of PLA above 300 °C was confirmed. On the other hand, stability of PHBV in both binary and ternary mixtures was improved compared to neat polymer.</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S004060312400100X/pdfft?md5=f59d7858752d1210a5cf050455324243&pid=1-s2.0-S004060312400100X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004060312400100X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060312400100X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Thermal stability of binary and ternary biodegradable polymer blends assessed by isoconversional kinetic analysis
Here we report on kinetic analysis of thermal degradation of polymer blends based on incremental isoconversional method coupled with mathematical deconvolution of thermogravimetric curves based on Fraser–Suzuki peak function. The measured kinetic envelope was decomposed into contributions approximately corresponding to degradation of each constituent of a polymer blend. Kinetic parameters from isoconversional analysis were further used for estimating the effect of blending on thermal stability of the constituents. Compared to routinely used parameters such as degradation onset temperature or DTG-peak temperature, the deconvolution analysis allows to determine stability of all components in a mixture regardless of their relative content. Here we also show that deconvolution analysis can be carried out directly on integral α(T) curves, thus bypassing the work with differential data dα/dt. Isoconversional analysis of deconvoluted α(T) curves allows to calculate various parameters for assessing the potentially accelerating or inhibiting effect on thermal degradation, for example, by means of decomposition half-time t0.5. The results can be made more robust by utilizing relative criteria for stability such as t0.5(blend)/t0.5(neat polymer). Using this approach, detrimental effect of PHBV and PBAT on thermal stability of PLA above 300 °C was confirmed. On the other hand, stability of PHBV in both binary and ternary mixtures was improved compared to neat polymer.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes