奇数zeta值的拉曼努赞公式的狄利克特特征类似物

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Anushree Gupta , Md Kashif Jamal , Nilmoni Karak , Bibekananda Maji
{"title":"奇数zeta值的拉曼努赞公式的狄利克特特征类似物","authors":"Anushree Gupta ,&nbsp;Md Kashif Jamal ,&nbsp;Nilmoni Karak ,&nbsp;Bibekananda Maji","doi":"10.1016/j.aam.2024.102707","DOIUrl":null,"url":null,"abstract":"<div><p>In 2001, Kanemitsu, Tanigawa, and Yoshimoto studied the following generalized Lambert series,<span><span><span><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></msup></mrow><mrow><mi>exp</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></math></span></span></span> for <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>h</mi><mo>∈</mo><mi>Z</mi></math></span> with some restriction on <em>h</em>. Recently, Dixit and the last author pointed out that this series has already been present in the Lost Notebook of Ramanujan with a more general form. Although, Ramanujan did not provide any transformation identity for it. In the same paper, Dixit and the last author found an elegant generalization of Ramanujan's celebrated identity for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> while extending the results of Kanemitsu et al. In a subsequent work, Kanemitsu et al. explored another extended version of the aforementioned series, namely,<span><span><span><math><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>q</mi></mrow></munderover><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><mi>χ</mi><mo>(</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></msup><mi>exp</mi><mo>⁡</mo><mrow><mo>(</mo><mo>−</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>exp</mi><mo>⁡</mo><mo>(</mo><mo>−</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>x</mi><mo>)</mo></mrow></mfrac><mo>,</mo></math></span></span></span> where <em>χ</em> denotes a Dirichlet character modulo <em>q</em>, <span><math><mi>N</mi><mo>∈</mo><mn>2</mn><mi>N</mi></math></span> and with some restriction on the variable <em>h</em>. In the current paper, we investigate the above series for <em>any</em> <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>h</mi><mo>∈</mo><mi>Z</mi></math></span>. We obtain a Dirichlet character analogue of Dixit and the last author's identity and there by derive a two variable generalization of Ramanujan's identity for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>. Moreover, we establish a new identity for <span><math><mi>L</mi><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mi>χ</mi><mo>)</mo></math></span> analogous to Ramanujan's famous identity for <span><math><mi>ζ</mi><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dirichlet character analogue of Ramanujan's formula for odd zeta values\",\"authors\":\"Anushree Gupta ,&nbsp;Md Kashif Jamal ,&nbsp;Nilmoni Karak ,&nbsp;Bibekananda Maji\",\"doi\":\"10.1016/j.aam.2024.102707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2001, Kanemitsu, Tanigawa, and Yoshimoto studied the following generalized Lambert series,<span><span><span><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></msup></mrow><mrow><mi>exp</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>x</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></math></span></span></span> for <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>h</mi><mo>∈</mo><mi>Z</mi></math></span> with some restriction on <em>h</em>. Recently, Dixit and the last author pointed out that this series has already been present in the Lost Notebook of Ramanujan with a more general form. Although, Ramanujan did not provide any transformation identity for it. In the same paper, Dixit and the last author found an elegant generalization of Ramanujan's celebrated identity for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> while extending the results of Kanemitsu et al. In a subsequent work, Kanemitsu et al. explored another extended version of the aforementioned series, namely,<span><span><span><math><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>q</mi></mrow></munderover><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mfrac><mrow><mi>χ</mi><mo>(</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>h</mi></mrow></msup><mi>exp</mi><mo>⁡</mo><mrow><mo>(</mo><mo>−</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mi>q</mi></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>exp</mi><mo>⁡</mo><mo>(</mo><mo>−</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>N</mi></mrow></msup><mi>x</mi><mo>)</mo></mrow></mfrac><mo>,</mo></math></span></span></span> where <em>χ</em> denotes a Dirichlet character modulo <em>q</em>, <span><math><mi>N</mi><mo>∈</mo><mn>2</mn><mi>N</mi></math></span> and with some restriction on the variable <em>h</em>. In the current paper, we investigate the above series for <em>any</em> <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>h</mi><mo>∈</mo><mi>Z</mi></math></span>. We obtain a Dirichlet character analogue of Dixit and the last author's identity and there by derive a two variable generalization of Ramanujan's identity for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>. Moreover, we establish a new identity for <span><math><mi>L</mi><mo>(</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mi>χ</mi><mo>)</mo></math></span> analogous to Ramanujan's famous identity for <span><math><mi>ζ</mi><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000381\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

2001 年,金光(Kanemitsu)、谷川(Tanigawa)和吉本(Yoshimoto)研究了以下广义朗伯数列:∑n=1∞nN-2hexp(nNx)-1,适用于 N∈N 和 h∈Z 且对 h 有一定限制。最近,迪克西特和最后一位作者指出,这个数列已经以更一般的形式出现在拉马努扬的《遗失的笔记本》中。不过,拉马努扬并没有为它提供任何变换标识。在同一篇文章中,Dixit 和最后一位作者在扩展 Kanemitsu 等人的研究成果的同时,发现了拉马努扬对ζ(2m+1) 的著名特征的优雅概括。探索了上述数列的另一个扩展版本,即∑r=1q∑n=1∞χ(r)nN-2hexp(-rqnNx)1-exp(-nNx),其中 χ 表示模数为 q、N∈2N 且对变量 h 有一定限制的 Dirichlet 字符。在本文中,我们研究了任意 N∈N 和 h∈Z 的上述数列。我们得到了 Dixit 和最后一位作者的 Dirichlet 特性类似物,并由此推导出 Ramanujan ζ(2m+1) 特性的双变量广义。此外,我们还为 L(1/3,χ) 建立了一个新的特性,类似于 Ramanujan 对 ζ(1/2) 的著名特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dirichlet character analogue of Ramanujan's formula for odd zeta values

In 2001, Kanemitsu, Tanigawa, and Yoshimoto studied the following generalized Lambert series,n=1nN2hexp(nNx)1, for NN and hZ with some restriction on h. Recently, Dixit and the last author pointed out that this series has already been present in the Lost Notebook of Ramanujan with a more general form. Although, Ramanujan did not provide any transformation identity for it. In the same paper, Dixit and the last author found an elegant generalization of Ramanujan's celebrated identity for ζ(2m+1) while extending the results of Kanemitsu et al. In a subsequent work, Kanemitsu et al. explored another extended version of the aforementioned series, namely,r=1qn=1χ(r)nN2hexp(rqnNx)1exp(nNx), where χ denotes a Dirichlet character modulo q, N2N and with some restriction on the variable h. In the current paper, we investigate the above series for any NN and hZ. We obtain a Dirichlet character analogue of Dixit and the last author's identity and there by derive a two variable generalization of Ramanujan's identity for ζ(2m+1). Moreover, we establish a new identity for L(1/3,χ) analogous to Ramanujan's famous identity for ζ(1/2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信