{"title":"使用稳定器图码的工程全息技术","authors":"Gerard Anglès Munné, Valentin Kasper, Felix Huber","doi":"10.1038/s41534-024-00822-z","DOIUrl":null,"url":null,"abstract":"<p>The discovery of holographic codes established a surprising connection between quantum error correction and the anti-de Sitter-conformal field theory correspondence. Recent technological progress in artificial quantum systems renders the experimental realization of such holographic codes now within reach. Formulating the hyperbolic pentagon code in terms of a stabilizer graph code, we give gate sequences that are tailored to systems with long-range interactions. We show how to obtain encoding and decoding circuits for the hyperbolic pentagon code, before focusing on a small instance of the holographic code on twelve qubits. Our approach allows to verify holographic properties by partial decoding operations, recovering bulk degrees of freedom from their nearby boundary.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering holography with stabilizer graph codes\",\"authors\":\"Gerard Anglès Munné, Valentin Kasper, Felix Huber\",\"doi\":\"10.1038/s41534-024-00822-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The discovery of holographic codes established a surprising connection between quantum error correction and the anti-de Sitter-conformal field theory correspondence. Recent technological progress in artificial quantum systems renders the experimental realization of such holographic codes now within reach. Formulating the hyperbolic pentagon code in terms of a stabilizer graph code, we give gate sequences that are tailored to systems with long-range interactions. We show how to obtain encoding and decoding circuits for the hyperbolic pentagon code, before focusing on a small instance of the holographic code on twelve qubits. Our approach allows to verify holographic properties by partial decoding operations, recovering bulk degrees of freedom from their nearby boundary.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00822-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00822-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Engineering holography with stabilizer graph codes
The discovery of holographic codes established a surprising connection between quantum error correction and the anti-de Sitter-conformal field theory correspondence. Recent technological progress in artificial quantum systems renders the experimental realization of such holographic codes now within reach. Formulating the hyperbolic pentagon code in terms of a stabilizer graph code, we give gate sequences that are tailored to systems with long-range interactions. We show how to obtain encoding and decoding circuits for the hyperbolic pentagon code, before focusing on a small instance of the holographic code on twelve qubits. Our approach allows to verify holographic properties by partial decoding operations, recovering bulk degrees of freedom from their nearby boundary.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.