表皮昼夜节律时钟整合并颠覆大脑信号,保证皮肤平衡

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Thomas Mortimer, Valentina M. Zinna, Muge Atalay, Carmelo Laudanna, Oleg Deryagin, Guillem Posas, Jacob G. Smith, Elisa García-Lara, Mireia Vaca-Dempere, Leonardo Vinícius Monteiro de Assis, Isabel Heyde, Kevin B. Koronowski, Paul Petrus, Carolina M. Greco, Stephen Forrow, Henrik Oster, Paolo Sassone-Corsi, Patrick-Simon Welz, Pura Muñoz-Cánoves, Salvador Aznar Benitah
{"title":"表皮昼夜节律时钟整合并颠覆大脑信号,保证皮肤平衡","authors":"Thomas Mortimer, Valentina M. Zinna, Muge Atalay, Carmelo Laudanna, Oleg Deryagin, Guillem Posas, Jacob G. Smith, Elisa García-Lara, Mireia Vaca-Dempere, Leonardo Vinícius Monteiro de Assis, Isabel Heyde, Kevin B. Koronowski, Paul Petrus, Carolina M. Greco, Stephen Forrow, Henrik Oster, Paolo Sassone-Corsi, Patrick-Simon Welz, Pura Muñoz-Cánoves, Salvador Aznar Benitah","doi":"10.1016/j.stem.2024.04.013","DOIUrl":null,"url":null,"abstract":"<p>In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"17 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis\",\"authors\":\"Thomas Mortimer, Valentina M. Zinna, Muge Atalay, Carmelo Laudanna, Oleg Deryagin, Guillem Posas, Jacob G. Smith, Elisa García-Lara, Mireia Vaca-Dempere, Leonardo Vinícius Monteiro de Assis, Isabel Heyde, Kevin B. Koronowski, Paul Petrus, Carolina M. Greco, Stephen Forrow, Henrik Oster, Paolo Sassone-Corsi, Patrick-Simon Welz, Pura Muñoz-Cánoves, Salvador Aznar Benitah\",\"doi\":\"10.1016/j.stem.2024.04.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.04.013\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.04.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在哺乳动物中,昼夜节律时钟网络驱动着组织特异性平衡的日节律。为了剖析组织间的日常交流,我们构建了一个仅由两个节点组成的小鼠最小时钟网络:外周表皮时钟和中枢大脑时钟。通过对这一孤立连接进行转录组学和功能表征,我们确定了外周组织时钟对系统输入的把关功能。表皮时钟同时整合和颠覆大脑信号,以确保表皮日常生理活动的及时执行。表皮干细胞区的细胞周期能否及时终止,取决于是否结合了来自大脑的时钟驱动信号。与此相反,表皮时钟纠正或超越潜在的破坏性进食相关信号,以确保DNA复制的最佳时机。综上所述,我们提出了一种方法,用于对组织中每日时间组织的系统依赖性进行编目,并确定了外周昼夜节律钟保证组织稳态的重要守门功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis

The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信