控制表面光活性:半导体表面酸酐官能化分子中π-共轭的影响

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Federico Frezza, Dr. Ana Sánchez-Grande, Dr. Sofia Canola, Anna Lamancová, Dr. Pingo Mutombo, Qifan Chen, Prof. Dr. Christian Wäckerlin, Prof. Karl-Heinz Ernst, Dr. Matthias Muntwiler, Dr. Nicola Zema, Dr. Marco Di Giovannantonio, Dr. Dana Nachtigallová, Prof. Pavel Jelínek
{"title":"控制表面光活性:半导体表面酸酐官能化分子中π-共轭的影响","authors":"Federico Frezza,&nbsp;Dr. Ana Sánchez-Grande,&nbsp;Dr. Sofia Canola,&nbsp;Anna Lamancová,&nbsp;Dr. Pingo Mutombo,&nbsp;Qifan Chen,&nbsp;Prof. Dr. Christian Wäckerlin,&nbsp;Prof. Karl-Heinz Ernst,&nbsp;Dr. Matthias Muntwiler,&nbsp;Dr. Nicola Zema,&nbsp;Dr. Marco Di Giovannantonio,&nbsp;Dr. Dana Nachtigallová,&nbsp;Prof. Pavel Jelínek","doi":"10.1002/anie.202405983","DOIUrl":null,"url":null,"abstract":"<p>On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO<sub>2</sub>. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 30","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202405983","citationCount":"0","resultStr":"{\"title\":\"Controlling On-Surface Photoactivity: The Impact of π-Conjugation in Anhydride-Functionalized Molecules on a Semiconductor Surface\",\"authors\":\"Federico Frezza,&nbsp;Dr. Ana Sánchez-Grande,&nbsp;Dr. Sofia Canola,&nbsp;Anna Lamancová,&nbsp;Dr. Pingo Mutombo,&nbsp;Qifan Chen,&nbsp;Prof. Dr. Christian Wäckerlin,&nbsp;Prof. Karl-Heinz Ernst,&nbsp;Dr. Matthias Muntwiler,&nbsp;Dr. Nicola Zema,&nbsp;Dr. Marco Di Giovannantonio,&nbsp;Dr. Dana Nachtigallová,&nbsp;Prof. Pavel Jelínek\",\"doi\":\"10.1002/anie.202405983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO<sub>2</sub>. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 30\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202405983\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202405983\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202405983","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面合成已成为在金属表面生长低维碳基纳米材料的重要方法。然而,要利用有机纳米结构的特性,必须将其与金属基底脱钩,这就需要采用转移方法或新策略,直接在惰性表面上进行反应。在半导体/绝缘表面直接使用表面光诱导反应是应对这些挑战的另一种方法。在此,我们探索了超高真空条件下不同有机分子在 SnSe 半导体表面上的光化学活性,提出了一种新型表面光诱导反应。我们观察到酸酐基团的选择性光解离,释放出 CO 和 CO2。此外,我们还理顺了光化学活性与分子核心的π-共轭之间的关系。理论计算阐明了两种模型酸酐的不同实验行为,显示了分子结构如何影响激发态的分布。我们的发现为直接在技术相关基质上进行表面合成开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controlling On-Surface Photoactivity: The Impact of π-Conjugation in Anhydride-Functionalized Molecules on a Semiconductor Surface

Controlling On-Surface Photoactivity: The Impact of π-Conjugation in Anhydride-Functionalized Molecules on a Semiconductor Surface

On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either transfer methods or new strategies to perform reactions directly on inert surfaces. The use of on-surface light-induced reactions directly on semiconductor/insulating surfaces represents an alternative approach to address these challenges. Here, exploring the photochemical activity of different organic molecules on a SnSe semiconductor surface under ultra-high vacuum, we present a novel on-surface light-induced reaction. The selective photodissociation of the anhydride group is observed, releasing CO and CO2. Moreover, we rationalize the relationship between the photochemical activity and the π-conjugation of the molecular core. The different experimental behaviour of two model anhydrides was elucidated by theoretical calculations, showing how the molecular structure influences the distribution of the excited states. Our findings open new pathways for on-surface synthesis directly on technologically relevant substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信