{"title":"热带金枪鱼转移建模:膨胀幂对数回归法","authors":"Francisco F. Queiroz, Silvia L. P. Ferrari","doi":"10.1002/bimj.202300288","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new class of zero-or-one inflated power logit (IPL) regression models, which serve as a versatile tool for analyzing bounded continuous data with observations at a boundary. These models are applied to explore the effects of climate changes on the distribution of tropical tuna within the North Atlantic Ocean. Our findings suggest that our modeling approach is adequate and capable of handling the outliers in the data. It exhibited superior performance compared to rival models in both diagnostic analysis and regarding the inference robustness. We offer a user-friendly method for fitting IPL regression models in practical applications.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling tropical tuna shifts: An inflated power logit regression approach\",\"authors\":\"Francisco F. Queiroz, Silvia L. P. Ferrari\",\"doi\":\"10.1002/bimj.202300288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new class of zero-or-one inflated power logit (IPL) regression models, which serve as a versatile tool for analyzing bounded continuous data with observations at a boundary. These models are applied to explore the effects of climate changes on the distribution of tropical tuna within the North Atlantic Ocean. Our findings suggest that our modeling approach is adequate and capable of handling the outliers in the data. It exhibited superior performance compared to rival models in both diagnostic analysis and regarding the inference robustness. We offer a user-friendly method for fitting IPL regression models in practical applications.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300288\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300288","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Modeling tropical tuna shifts: An inflated power logit regression approach
We introduce a new class of zero-or-one inflated power logit (IPL) regression models, which serve as a versatile tool for analyzing bounded continuous data with observations at a boundary. These models are applied to explore the effects of climate changes on the distribution of tropical tuna within the North Atlantic Ocean. Our findings suggest that our modeling approach is adequate and capable of handling the outliers in the data. It exhibited superior performance compared to rival models in both diagnostic analysis and regarding the inference robustness. We offer a user-friendly method for fitting IPL regression models in practical applications.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.