{"title":"基于多尺度变换器的桥图注意图卷积网络用于脑电图情感识别","authors":"Huachao Yan;Kailing Guo;Xiaofen Xing;Xiangmin Xu","doi":"10.1109/TAFFC.2024.3394873","DOIUrl":null,"url":null,"abstract":"In multichannel electroencephalograph (EEG) emotion recognition, most graph-based studies employ shallow graph model for spatial characteristics learning due to node over-smoothing caused by an increase in network depth. To address over-smoothing, we propose the bridge graph attention-based graph convolution network (BGAGCN). It bridges previous graph convolution layers to attention coefficients of the final layer by adaptively combining each graph convolution output based on the graph attention network, thereby enhancing feature distinctiveness. Considering that graph-based network primarily focus on local EEG channel relationships, we introduce a transformer for global dependency. Inspired by the neuroscience finding that neural activities of different timescales reflect distinct spatial connectivities, we modify the transformer to a multi-scale transformer (MT) by applying multi-head attention to multichannel EEG signals after 1D convolutions at different scales. MT learns spatial features more elaborately to enhance feature representation ability. By combining BGAGCN and MT, our model BGAGCN-MT achieves state-of-the-art accuracy under subject-dependent and subject-independent protocols across three benchmark EEG emotion datasets (SEED, SEED-IV and DREAMER). Notably, our model effectively addresses over-smoothing in graph neural networks and provides an efficient solution to learning spatial relationships of EEG features at different scales.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"15 4","pages":"2042-2054"},"PeriodicalIF":9.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge Graph Attention Based Graph Convolution Network With Multi-Scale Transformer for EEG Emotion Recognition\",\"authors\":\"Huachao Yan;Kailing Guo;Xiaofen Xing;Xiangmin Xu\",\"doi\":\"10.1109/TAFFC.2024.3394873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multichannel electroencephalograph (EEG) emotion recognition, most graph-based studies employ shallow graph model for spatial characteristics learning due to node over-smoothing caused by an increase in network depth. To address over-smoothing, we propose the bridge graph attention-based graph convolution network (BGAGCN). It bridges previous graph convolution layers to attention coefficients of the final layer by adaptively combining each graph convolution output based on the graph attention network, thereby enhancing feature distinctiveness. Considering that graph-based network primarily focus on local EEG channel relationships, we introduce a transformer for global dependency. Inspired by the neuroscience finding that neural activities of different timescales reflect distinct spatial connectivities, we modify the transformer to a multi-scale transformer (MT) by applying multi-head attention to multichannel EEG signals after 1D convolutions at different scales. MT learns spatial features more elaborately to enhance feature representation ability. By combining BGAGCN and MT, our model BGAGCN-MT achieves state-of-the-art accuracy under subject-dependent and subject-independent protocols across three benchmark EEG emotion datasets (SEED, SEED-IV and DREAMER). Notably, our model effectively addresses over-smoothing in graph neural networks and provides an efficient solution to learning spatial relationships of EEG features at different scales.\",\"PeriodicalId\":13131,\"journal\":{\"name\":\"IEEE Transactions on Affective Computing\",\"volume\":\"15 4\",\"pages\":\"2042-2054\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Affective Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510577/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10510577/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bridge Graph Attention Based Graph Convolution Network With Multi-Scale Transformer for EEG Emotion Recognition
In multichannel electroencephalograph (EEG) emotion recognition, most graph-based studies employ shallow graph model for spatial characteristics learning due to node over-smoothing caused by an increase in network depth. To address over-smoothing, we propose the bridge graph attention-based graph convolution network (BGAGCN). It bridges previous graph convolution layers to attention coefficients of the final layer by adaptively combining each graph convolution output based on the graph attention network, thereby enhancing feature distinctiveness. Considering that graph-based network primarily focus on local EEG channel relationships, we introduce a transformer for global dependency. Inspired by the neuroscience finding that neural activities of different timescales reflect distinct spatial connectivities, we modify the transformer to a multi-scale transformer (MT) by applying multi-head attention to multichannel EEG signals after 1D convolutions at different scales. MT learns spatial features more elaborately to enhance feature representation ability. By combining BGAGCN and MT, our model BGAGCN-MT achieves state-of-the-art accuracy under subject-dependent and subject-independent protocols across three benchmark EEG emotion datasets (SEED, SEED-IV and DREAMER). Notably, our model effectively addresses over-smoothing in graph neural networks and provides an efficient solution to learning spatial relationships of EEG features at different scales.
期刊介绍:
The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.