Yang Zhong, Lenan Zhang, Xiangyu Li, Bachir El Fil, Carlos D. Díaz-Marín, Adela Chenyang Li, Xinyue Liu, Alina LaPotin, Evelyn N. Wang
{"title":"将材料创新与基于吸附原理的大气集水装置相结合","authors":"Yang Zhong, Lenan Zhang, Xiangyu Li, Bachir El Fil, Carlos D. Díaz-Marín, Adela Chenyang Li, Xinyue Liu, Alina LaPotin, Evelyn N. Wang","doi":"10.1038/s41578-024-00665-2","DOIUrl":null,"url":null,"abstract":"The atmosphere contains 13,000 trillion litres of water, and it is a natural resource available anywhere. Sorption-based atmospheric water harvesting (SAWH) is capable of extracting water vapour using sorbent materials across a broad spectrum of relative humidity, opening new avenues to address water scarcity faced by two-thirds of the population of the world. Although substantial progress has been made, there is still a considerable barrier between fundamental research and real-world applications. In this Review, we provide a multiscale perspective for SAWH technologies that can fill existing knowledge gaps across multiple length scales. First, we elucidate water sorption mechanisms at the molecular level, approaches to understanding sorbent materials, and water transport phenomena. With microscopic insights, we bridge materials innovations to device realization, discuss strategies to enhance device-level sorption kinetics and heat transfer performance, and show that a multiscale design and optimization strategy can lead to a new opportunity space towards system thermodynamic limits. Finally, we provide an outlook for the technoeconomic, social and environmental impact of large-scale SAWH as a global water technology. By bridging materials to devices, we envision that this multiscale perspective can guide next-generation SAWH technologies and facilitate a broader impact on society and the environment. Harvesting freshwater from the air using water sorption materials is an innovative strategy to address water scarcity. This Review offers a multiscale perspective to design the next generation of sorption-based atmospheric water harvesting technology by bridging materials innovations to device realization and provides practical guidelines to understand its real-world impact.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 10","pages":"681-698"},"PeriodicalIF":79.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging materials innovations to sorption-based atmospheric water harvesting devices\",\"authors\":\"Yang Zhong, Lenan Zhang, Xiangyu Li, Bachir El Fil, Carlos D. Díaz-Marín, Adela Chenyang Li, Xinyue Liu, Alina LaPotin, Evelyn N. Wang\",\"doi\":\"10.1038/s41578-024-00665-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atmosphere contains 13,000 trillion litres of water, and it is a natural resource available anywhere. Sorption-based atmospheric water harvesting (SAWH) is capable of extracting water vapour using sorbent materials across a broad spectrum of relative humidity, opening new avenues to address water scarcity faced by two-thirds of the population of the world. Although substantial progress has been made, there is still a considerable barrier between fundamental research and real-world applications. In this Review, we provide a multiscale perspective for SAWH technologies that can fill existing knowledge gaps across multiple length scales. First, we elucidate water sorption mechanisms at the molecular level, approaches to understanding sorbent materials, and water transport phenomena. With microscopic insights, we bridge materials innovations to device realization, discuss strategies to enhance device-level sorption kinetics and heat transfer performance, and show that a multiscale design and optimization strategy can lead to a new opportunity space towards system thermodynamic limits. Finally, we provide an outlook for the technoeconomic, social and environmental impact of large-scale SAWH as a global water technology. By bridging materials to devices, we envision that this multiscale perspective can guide next-generation SAWH technologies and facilitate a broader impact on society and the environment. Harvesting freshwater from the air using water sorption materials is an innovative strategy to address water scarcity. This Review offers a multiscale perspective to design the next generation of sorption-based atmospheric water harvesting technology by bridging materials innovations to device realization and provides practical guidelines to understand its real-world impact.\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"9 10\",\"pages\":\"681-698\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41578-024-00665-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41578-024-00665-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging materials innovations to sorption-based atmospheric water harvesting devices
The atmosphere contains 13,000 trillion litres of water, and it is a natural resource available anywhere. Sorption-based atmospheric water harvesting (SAWH) is capable of extracting water vapour using sorbent materials across a broad spectrum of relative humidity, opening new avenues to address water scarcity faced by two-thirds of the population of the world. Although substantial progress has been made, there is still a considerable barrier between fundamental research and real-world applications. In this Review, we provide a multiscale perspective for SAWH technologies that can fill existing knowledge gaps across multiple length scales. First, we elucidate water sorption mechanisms at the molecular level, approaches to understanding sorbent materials, and water transport phenomena. With microscopic insights, we bridge materials innovations to device realization, discuss strategies to enhance device-level sorption kinetics and heat transfer performance, and show that a multiscale design and optimization strategy can lead to a new opportunity space towards system thermodynamic limits. Finally, we provide an outlook for the technoeconomic, social and environmental impact of large-scale SAWH as a global water technology. By bridging materials to devices, we envision that this multiscale perspective can guide next-generation SAWH technologies and facilitate a broader impact on society and the environment. Harvesting freshwater from the air using water sorption materials is an innovative strategy to address water scarcity. This Review offers a multiscale perspective to design the next generation of sorption-based atmospheric water harvesting technology by bridging materials innovations to device realization and provides practical guidelines to understand its real-world impact.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.