{"title":"爱因斯坦求解漫流的非均质变形","authors":"Adam Thompson","doi":"10.1112/jlms.12904","DOIUrl":null,"url":null,"abstract":"<p>For each non-flat, unimodular Ricci soliton solvmanifold <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>g</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathsf {S}_0,g_0)$</annotation>\n </semantics></math>, we construct a one-parameter family of complete, expanding, gradient Ricci solitons that admit a cohomogeneity one isometric action by <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathsf {S}_0$</annotation>\n </semantics></math>. The orbits of this action are hypersurfaces homothetic to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>g</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathsf {S}_0,g_0)$</annotation>\n </semantics></math>. These metrics are asymptotic at one end to an Einstein solvmanifold. In the one-parameter family, exactly one metric is Einstein, and exactly one has orbits that are isometric to <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>g</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathsf {S}_0,g_0)$</annotation>\n </semantics></math>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12904","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous deformations of Einstein solvmanifolds\",\"authors\":\"Adam Thompson\",\"doi\":\"10.1112/jlms.12904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For each non-flat, unimodular Ricci soliton solvmanifold <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>g</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathsf {S}_0,g_0)$</annotation>\\n </semantics></math>, we construct a one-parameter family of complete, expanding, gradient Ricci solitons that admit a cohomogeneity one isometric action by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\mathsf {S}_0$</annotation>\\n </semantics></math>. The orbits of this action are hypersurfaces homothetic to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>g</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathsf {S}_0,g_0)$</annotation>\\n </semantics></math>. These metrics are asymptotic at one end to an Einstein solvmanifold. In the one-parameter family, exactly one metric is Einstein, and exactly one has orbits that are isometric to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>g</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathsf {S}_0,g_0)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12904\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12904\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对于每一个非平坦、单模态的利玛窦孤素解旋体( S 0 , g 0 ) $ (\mathsf {S}_0,g_0)$ ,我们构建了一个完整的、扩展的、梯度的利玛窦孤素的单参数族,该族通过 S 0 $\mathsf {S}_0$ 接受同构一等轴作用。该作用的轨道是与 ( S 0 , g 0 ) $(\mathsf {S}_0,g_0)$ 同调的超曲面。这些度量在一端渐近于爱因斯坦溶域。在单参数族中,正好有一个度量是爱因斯坦度量,正好有一个度量的轨道与 ( S 0 , g 0 ) $(\mathsf {S}_0,g_0)$ 等距。
Inhomogeneous deformations of Einstein solvmanifolds
For each non-flat, unimodular Ricci soliton solvmanifold , we construct a one-parameter family of complete, expanding, gradient Ricci solitons that admit a cohomogeneity one isometric action by . The orbits of this action are hypersurfaces homothetic to . These metrics are asymptotic at one end to an Einstein solvmanifold. In the one-parameter family, exactly one metric is Einstein, and exactly one has orbits that are isometric to .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.