姿势和 CPAP 对鼻气流的影响

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Ahmad T. Hamdan , Sarin Rungmanee , Nithita Sattaratpaijit , Nader Shammout , B. Tucker Woodson , Guilherme J.M. Garcia
{"title":"姿势和 CPAP 对鼻气流的影响","authors":"Ahmad T. Hamdan ,&nbsp;Sarin Rungmanee ,&nbsp;Nithita Sattaratpaijit ,&nbsp;Nader Shammout ,&nbsp;B. Tucker Woodson ,&nbsp;Guilherme J.M. Garcia","doi":"10.1016/j.resp.2024.104268","DOIUrl":null,"url":null,"abstract":"<div><p>Obstructive sleep apnea (OSA) patients who use continuous positive airway pressure (CPAP) often complain of nasal dryness and nasal obstruction as side effects of CPAP. The physiological mechanisms by which CPAP may cause nasal dryness and nasal obstruction remain poorly understood. It has been hypothesized that CPAP interferes with the nasal cycle, abolishing the resting phase of the cycle and leading to nasal dryness. We performed rhinomanometry measurements in 31 OSA patients sitting, laid supine, and supine after 10 min of CPAP at 10 cmH<sub>2</sub>O. A posture change from sitting to supine led to more symmetric airflow partitioning between the left and right nostrils in the supine position. CPAP did not have a significant impact on nasal resistance, unilateral airflows, or airflow partitioning. Our results suggest that airflow partitioning becomes more symmetric immediately after changing to a supine position, while CPAP had no effect on nasal airflow, thus preserving the nearly symmetric airflow partitioning achieved after the posture change.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"325 ","pages":"Article 104268"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of posture and CPAP on nasal airflow\",\"authors\":\"Ahmad T. Hamdan ,&nbsp;Sarin Rungmanee ,&nbsp;Nithita Sattaratpaijit ,&nbsp;Nader Shammout ,&nbsp;B. Tucker Woodson ,&nbsp;Guilherme J.M. Garcia\",\"doi\":\"10.1016/j.resp.2024.104268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Obstructive sleep apnea (OSA) patients who use continuous positive airway pressure (CPAP) often complain of nasal dryness and nasal obstruction as side effects of CPAP. The physiological mechanisms by which CPAP may cause nasal dryness and nasal obstruction remain poorly understood. It has been hypothesized that CPAP interferes with the nasal cycle, abolishing the resting phase of the cycle and leading to nasal dryness. We performed rhinomanometry measurements in 31 OSA patients sitting, laid supine, and supine after 10 min of CPAP at 10 cmH<sub>2</sub>O. A posture change from sitting to supine led to more symmetric airflow partitioning between the left and right nostrils in the supine position. CPAP did not have a significant impact on nasal resistance, unilateral airflows, or airflow partitioning. Our results suggest that airflow partitioning becomes more symmetric immediately after changing to a supine position, while CPAP had no effect on nasal airflow, thus preserving the nearly symmetric airflow partitioning achieved after the posture change.</p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"325 \",\"pages\":\"Article 104268\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000612\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000612","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用持续气道正压(CPAP)的阻塞性睡眠呼吸暂停(OSA)患者经常抱怨 CPAP 带来的副作用--鼻腔干燥和鼻塞。人们对 CPAP 可能导致鼻腔干燥和鼻塞的生理机制仍然知之甚少。有一种假设认为,CPAP 会干扰鼻腔循环,取消循环的静息阶段,从而导致鼻腔干燥。我们对 31 名 OSA 患者的坐姿、仰卧姿态以及在 10 cmH2O 压力下使用 10 分钟 CPAP 后的仰卧姿态进行了鼻测量。从坐姿到仰卧姿势的改变使仰卧姿势下左右鼻孔之间的气流分区更加对称。CPAP 对鼻阻力、单侧气流或气流分区没有明显影响。我们的结果表明,在改变为仰卧姿势后,气流分区立即变得更加对称,而 CPAP 对鼻腔气流没有影响,从而保持了姿势改变后实现的近乎对称的气流分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of posture and CPAP on nasal airflow

Obstructive sleep apnea (OSA) patients who use continuous positive airway pressure (CPAP) often complain of nasal dryness and nasal obstruction as side effects of CPAP. The physiological mechanisms by which CPAP may cause nasal dryness and nasal obstruction remain poorly understood. It has been hypothesized that CPAP interferes with the nasal cycle, abolishing the resting phase of the cycle and leading to nasal dryness. We performed rhinomanometry measurements in 31 OSA patients sitting, laid supine, and supine after 10 min of CPAP at 10 cmH2O. A posture change from sitting to supine led to more symmetric airflow partitioning between the left and right nostrils in the supine position. CPAP did not have a significant impact on nasal resistance, unilateral airflows, or airflow partitioning. Our results suggest that airflow partitioning becomes more symmetric immediately after changing to a supine position, while CPAP had no effect on nasal airflow, thus preserving the nearly symmetric airflow partitioning achieved after the posture change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信