Wei Sun , Qibin Xu , Shuaishuai Yang , Suo Liu , Murtaza Sayed , Emmanuel Mousset , Chun Zhao
{"title":"基于阴极膜的电化学氧化还原水处理工艺:综述","authors":"Wei Sun , Qibin Xu , Shuaishuai Yang , Suo Liu , Murtaza Sayed , Emmanuel Mousset , Chun Zhao","doi":"10.1016/j.coche.2024.101023","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reviews the latest research advancements in cathodic membrane (CM)–based electrochemical redox processes (CMERs) for water treatment. The water purification mechanisms by CMERs, including CMER reduction, CMER Fenton, and CMER coupling other oxidant processes (CMEOs), are explained. Especially, the pathways of formation of reactive species (e.g. •OH, <sup>1</sup>O<sub>2</sub>, and O<sub>2</sub><sup>•<img></sup>) are presented in detail. Besides, the effects of different CMs and operating conditions are considered. The applications extending to refractory pollutants removal, disinfection, membrane fouling alleviation, and resource recovery are well presented and analyzed. CMER reactors are also discussed for their potentials of scale up for water treatment. Finally, the trends in the field encompassing current knowledge gaps are highlighted, and the recommendations for future research are proposed.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"44 ","pages":"Article 101023"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathodic membrane–based electrochemical redox process for water treatment: a review\",\"authors\":\"Wei Sun , Qibin Xu , Shuaishuai Yang , Suo Liu , Murtaza Sayed , Emmanuel Mousset , Chun Zhao\",\"doi\":\"10.1016/j.coche.2024.101023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reviews the latest research advancements in cathodic membrane (CM)–based electrochemical redox processes (CMERs) for water treatment. The water purification mechanisms by CMERs, including CMER reduction, CMER Fenton, and CMER coupling other oxidant processes (CMEOs), are explained. Especially, the pathways of formation of reactive species (e.g. •OH, <sup>1</sup>O<sub>2</sub>, and O<sub>2</sub><sup>•<img></sup>) are presented in detail. Besides, the effects of different CMs and operating conditions are considered. The applications extending to refractory pollutants removal, disinfection, membrane fouling alleviation, and resource recovery are well presented and analyzed. CMER reactors are also discussed for their potentials of scale up for water treatment. Finally, the trends in the field encompassing current knowledge gaps are highlighted, and the recommendations for future research are proposed.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"44 \",\"pages\":\"Article 101023\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000248\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000248","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cathodic membrane–based electrochemical redox process for water treatment: a review
This paper reviews the latest research advancements in cathodic membrane (CM)–based electrochemical redox processes (CMERs) for water treatment. The water purification mechanisms by CMERs, including CMER reduction, CMER Fenton, and CMER coupling other oxidant processes (CMEOs), are explained. Especially, the pathways of formation of reactive species (e.g. •OH, 1O2, and O2•) are presented in detail. Besides, the effects of different CMs and operating conditions are considered. The applications extending to refractory pollutants removal, disinfection, membrane fouling alleviation, and resource recovery are well presented and analyzed. CMER reactors are also discussed for their potentials of scale up for water treatment. Finally, the trends in the field encompassing current knowledge gaps are highlighted, and the recommendations for future research are proposed.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.