{"title":"压应力对压电半导体氧化锌/金刚石中爱波传播的影响:屏蔽效应","authors":"Issam Ben Salah , Cherif Othmani , Anouar Njeh","doi":"10.1016/j.mechrescom.2024.104278","DOIUrl":null,"url":null,"abstract":"<div><p>The issue of applied stress in hetero-structures is a persistent problem in materials science and technology. Significant efforts have been made from both numerical and experimental points of view to gain a better understanding of how to address this issue in various engineering industrial applications. In this paper, we numerically calculate the effects of compressive stress on Love waves propagation in a pre-stressed piezoelectric semiconductor ZnO/Diamond. The <em>p</em>-type semiconductor is explicitly taken into account, where the concentrations of holes and electrons are <em>p</em><sub>0</sub> = 1 × 10<sup>24</sup><em>m</em><sup>−3</sup>and <em>n</em><sub>0</sub> = 1 × 10<sup>23</sup><em>m</em><sup>−3</sup>, respectively. Numerical results show that the phase velocities of Love waves decrease with uniaxial stress equal to -100 MPa. In addition, this uniaxial compressive stress contributes to a decrease in the magnitude of the electric potential and the concentrations of holes and electrons. In the meantime, the “Screening effect” remains similar for both the unstressed and the pre-stressed structures.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0093641324000387/pdfft?md5=2e481518c26906c2c29c4d4207c8e2a3&pid=1-s2.0-S0093641324000387-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of compressive stress on wave Love waves propagation in a piezoelectric semiconductor ZnO/Diamond: A screening effect\",\"authors\":\"Issam Ben Salah , Cherif Othmani , Anouar Njeh\",\"doi\":\"10.1016/j.mechrescom.2024.104278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The issue of applied stress in hetero-structures is a persistent problem in materials science and technology. Significant efforts have been made from both numerical and experimental points of view to gain a better understanding of how to address this issue in various engineering industrial applications. In this paper, we numerically calculate the effects of compressive stress on Love waves propagation in a pre-stressed piezoelectric semiconductor ZnO/Diamond. The <em>p</em>-type semiconductor is explicitly taken into account, where the concentrations of holes and electrons are <em>p</em><sub>0</sub> = 1 × 10<sup>24</sup><em>m</em><sup>−3</sup>and <em>n</em><sub>0</sub> = 1 × 10<sup>23</sup><em>m</em><sup>−3</sup>, respectively. Numerical results show that the phase velocities of Love waves decrease with uniaxial stress equal to -100 MPa. In addition, this uniaxial compressive stress contributes to a decrease in the magnitude of the electric potential and the concentrations of holes and electrons. In the meantime, the “Screening effect” remains similar for both the unstressed and the pre-stressed structures.</p></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0093641324000387/pdfft?md5=2e481518c26906c2c29c4d4207c8e2a3&pid=1-s2.0-S0093641324000387-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641324000387\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000387","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Effects of compressive stress on wave Love waves propagation in a piezoelectric semiconductor ZnO/Diamond: A screening effect
The issue of applied stress in hetero-structures is a persistent problem in materials science and technology. Significant efforts have been made from both numerical and experimental points of view to gain a better understanding of how to address this issue in various engineering industrial applications. In this paper, we numerically calculate the effects of compressive stress on Love waves propagation in a pre-stressed piezoelectric semiconductor ZnO/Diamond. The p-type semiconductor is explicitly taken into account, where the concentrations of holes and electrons are p0 = 1 × 1024m−3and n0 = 1 × 1023m−3, respectively. Numerical results show that the phase velocities of Love waves decrease with uniaxial stress equal to -100 MPa. In addition, this uniaxial compressive stress contributes to a decrease in the magnitude of the electric potential and the concentrations of holes and electrons. In the meantime, the “Screening effect” remains similar for both the unstressed and the pre-stressed structures.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.