一石二鸟:K2CO3 促进附着在多孔碳骨架上的 K3PO4 涂层 Na3V2(PO4)3 的原位合成,从而实现优异的钠储存性能

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Zhou , Yanjun Chen
{"title":"一石二鸟:K2CO3 促进附着在多孔碳骨架上的 K3PO4 涂层 Na3V2(PO4)3 的原位合成,从而实现优异的钠储存性能","authors":"Tao Zhou ,&nbsp;Yanjun Chen","doi":"10.1016/j.mtnano.2024.100479","DOIUrl":null,"url":null,"abstract":"<div><p>Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) has attracted much attention because of its open 3D channel, high voltage platform and capacity, but its inherent low ionic and electronic conductivity limits further development. In this work, we successfully achieve the double modification effect by adding K<sub>2</sub>CO<sub>3</sub> in situ for the first time. Firstly, the addition of K<sub>2</sub>CO<sub>3</sub> induces the formation of porous carbon substrate, which can reduce the accumulation of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> particles, thus making the sample particles more dispersed and uniform. Meanwhile, NVP active particles can be uniformly attached to the porous carbon substrate, effectively promoting the electronic conductivity. Secondly, K<sub>2</sub>CO<sub>3</sub> can be decomposed and react to produce K<sub>3</sub>PO<sub>4</sub> in the sintering process, which is evenly coated on the periphery of NVP grains to form a double-layer conductive interface with excess amorphous carbon. This unique double-interface not only boost specific conductance but also play a protective role to prevent the side reaction in the electrolyte from destroying the cathode material. Moreover, the ex-situ XRD/XPS/SEM/TEM after cycling further demonstrate the stabilized porous skeleton and the existence of K<sub>3</sub>PO<sub>4</sub> coatings. Comprehensively, the optimized NVP/C@1%K<sub>3</sub>PO<sub>4</sub> sample behaves outstanding electrochemistry capability and cyclic performance. With a high capacity of 122.3 mAh g<sup>−1</sup> at 0.1C, this material exhibits excellent cycling stability. At 60C, it delivers a high capacity of 85.1 mAh g<sup>−1</sup> and retains 69.1 mAh g<sup>−1</sup> after 7000 cycles. Even at 180C, it demonstrates a remarkable capacity of 79.97 mAh g<sup>−1</sup> and maintains 49.8 mAh g<sup>−1</sup> after 14,000 cycles. When integrated into a full battery, the assembled NVP/C@1%K<sub>3</sub>PO<sub>4</sub>//CHC battery exhibits a reversible capacity of 112.2 mAh g<sup>−1</sup> at 0.1C and retains 70 mAh g<sup>−1</sup> at 2C, highlighting its promising potential for commercial applications.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"26 ","pages":"Article 100479"},"PeriodicalIF":8.2000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One stone two birds: K2CO3 promoting the in-situ synthesis of K3PO4 coated Na3V2(PO4)3 attached on the porous carbon skeleton for superior sodium storage performance\",\"authors\":\"Tao Zhou ,&nbsp;Yanjun Chen\",\"doi\":\"10.1016/j.mtnano.2024.100479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) has attracted much attention because of its open 3D channel, high voltage platform and capacity, but its inherent low ionic and electronic conductivity limits further development. In this work, we successfully achieve the double modification effect by adding K<sub>2</sub>CO<sub>3</sub> in situ for the first time. Firstly, the addition of K<sub>2</sub>CO<sub>3</sub> induces the formation of porous carbon substrate, which can reduce the accumulation of Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> particles, thus making the sample particles more dispersed and uniform. Meanwhile, NVP active particles can be uniformly attached to the porous carbon substrate, effectively promoting the electronic conductivity. Secondly, K<sub>2</sub>CO<sub>3</sub> can be decomposed and react to produce K<sub>3</sub>PO<sub>4</sub> in the sintering process, which is evenly coated on the periphery of NVP grains to form a double-layer conductive interface with excess amorphous carbon. This unique double-interface not only boost specific conductance but also play a protective role to prevent the side reaction in the electrolyte from destroying the cathode material. Moreover, the ex-situ XRD/XPS/SEM/TEM after cycling further demonstrate the stabilized porous skeleton and the existence of K<sub>3</sub>PO<sub>4</sub> coatings. Comprehensively, the optimized NVP/C@1%K<sub>3</sub>PO<sub>4</sub> sample behaves outstanding electrochemistry capability and cyclic performance. With a high capacity of 122.3 mAh g<sup>−1</sup> at 0.1C, this material exhibits excellent cycling stability. At 60C, it delivers a high capacity of 85.1 mAh g<sup>−1</sup> and retains 69.1 mAh g<sup>−1</sup> after 7000 cycles. Even at 180C, it demonstrates a remarkable capacity of 79.97 mAh g<sup>−1</sup> and maintains 49.8 mAh g<sup>−1</sup> after 14,000 cycles. When integrated into a full battery, the assembled NVP/C@1%K<sub>3</sub>PO<sub>4</sub>//CHC battery exhibits a reversible capacity of 112.2 mAh g<sup>−1</sup> at 0.1C and retains 70 mAh g<sup>−1</sup> at 2C, highlighting its promising potential for commercial applications.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"26 \",\"pages\":\"Article 100479\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000294\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000294","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Na3V2(PO4)3 (NVP) 因其开放的三维通道、高电压平台和容量而备受关注,但其固有的低离子导电性和电子导电性限制了其进一步发展。在这项工作中,我们首次通过原位添加 K2CO3 成功实现了双重改性效果。首先,K2CO3 的加入诱导了多孔碳基底的形成,可以减少 Na3V2(PO4)3 颗粒的堆积,从而使样品颗粒更加分散和均匀。同时,NVP 活性颗粒可以均匀地附着在多孔碳基底上,有效促进电子导电性。其次,K2CO3 可在烧结过程中分解反应生成 K3PO4,并均匀地涂覆在 NVP 晶粒的外围,与多余的无定形碳形成双层导电界面。这种独特的双界面不仅能提高比电导率,还能起到保护作用,防止电解液中的副反应破坏阴极材料。此外,循环后的原位 XRD/XPS/SEM/TEM 进一步证明了多孔骨架的稳定和 K3PO4 涂层的存在。综合来看,优化后的 NVP/C@1%K3PO4 样品具有出色的电化学能力和循环性能。这种材料在 0.1C 时的容量高达 122.3 mAh g-1,显示出卓越的循环稳定性。在 60C 时,它的容量高达 85.1 mAh g-1,循环 7000 次后仍能保持 69.1 mAh g-1。即使在 180C 下,它也能显示出 79.97 mAh g-1 的出色容量,并在 14000 次循环后保持 49.8 mAh g-1 的容量。当集成到一个完整的电池中时,组装好的 NVP/C@1%K3PO4/HC/C 电池在 0.1C 时显示出 112.2 mAh g-1 的可逆容量,并在 2C 时保持 70 mAh g-1 的容量,突显了其在商业应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One stone two birds: K2CO3 promoting the in-situ synthesis of K3PO4 coated Na3V2(PO4)3 attached on the porous carbon skeleton for superior sodium storage performance

One stone two birds: K2CO3 promoting the in-situ synthesis of K3PO4 coated Na3V2(PO4)3 attached on the porous carbon skeleton for superior sodium storage performance

Na3V2(PO4)3 (NVP) has attracted much attention because of its open 3D channel, high voltage platform and capacity, but its inherent low ionic and electronic conductivity limits further development. In this work, we successfully achieve the double modification effect by adding K2CO3 in situ for the first time. Firstly, the addition of K2CO3 induces the formation of porous carbon substrate, which can reduce the accumulation of Na3V2(PO4)3 particles, thus making the sample particles more dispersed and uniform. Meanwhile, NVP active particles can be uniformly attached to the porous carbon substrate, effectively promoting the electronic conductivity. Secondly, K2CO3 can be decomposed and react to produce K3PO4 in the sintering process, which is evenly coated on the periphery of NVP grains to form a double-layer conductive interface with excess amorphous carbon. This unique double-interface not only boost specific conductance but also play a protective role to prevent the side reaction in the electrolyte from destroying the cathode material. Moreover, the ex-situ XRD/XPS/SEM/TEM after cycling further demonstrate the stabilized porous skeleton and the existence of K3PO4 coatings. Comprehensively, the optimized NVP/C@1%K3PO4 sample behaves outstanding electrochemistry capability and cyclic performance. With a high capacity of 122.3 mAh g−1 at 0.1C, this material exhibits excellent cycling stability. At 60C, it delivers a high capacity of 85.1 mAh g−1 and retains 69.1 mAh g−1 after 7000 cycles. Even at 180C, it demonstrates a remarkable capacity of 79.97 mAh g−1 and maintains 49.8 mAh g−1 after 14,000 cycles. When integrated into a full battery, the assembled NVP/C@1%K3PO4//CHC battery exhibits a reversible capacity of 112.2 mAh g−1 at 0.1C and retains 70 mAh g−1 at 2C, highlighting its promising potential for commercial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信