带有随机变量和随机系数的选择模型

IF 2.8 3区 经济学 Q1 ECONOMICS
Mehek Biswas , Chandra R. Bhat , Sulagna Ghosh , Abdul Rawoof Pinjari
{"title":"带有随机变量和随机系数的选择模型","authors":"Mehek Biswas ,&nbsp;Chandra R. Bhat ,&nbsp;Sulagna Ghosh ,&nbsp;Abdul Rawoof Pinjari","doi":"10.1016/j.jocm.2024.100488","DOIUrl":null,"url":null,"abstract":"<div><p>In travel choice models, variables describing alternative attributes such as travel time may have to be specified as stochastic because the analyst may not have accurate measurements of the attribute values considered by the decision-maker. Such stochasticity in alternative attributes is different from unobserved heterogeneity in the coefficients representing travellers’ response to those attributes. Specifying only one of these as random while keeping the other fixed can potentially result in biased parameter estimates, inferior goodness-of-fit, and distorted information for policy analysis. Therefore, in this study, we propose an integrated choice and stochastic variable modelling framework with random coefficients (i.e., an <em>ICSV-RC</em> framework) that allows the analyst to accommodate stochasticity in alternative attributes and random coefficients on such attributes. In addition, we show that ignoring either source of stochasticity – stochasticity in alternative attributes or unobserved heterogeneity in response to the attributes – results in models with inferior goodness-of-fit and a systematic bias in all parameter estimates. We demonstrate this using simulation experiments for two different travel choice settings, one involving labelled mode choice alternatives and the other involving unlabelled route choice alternatives. In addition, we present an empirical analysis in the context of truck route choice to highlight the importance of accommodating both sources of variability – stochasticity in travel times and random heterogeneity in response to travel times.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"51 ","pages":"Article 100488"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice models with stochastic variables and random coefficients\",\"authors\":\"Mehek Biswas ,&nbsp;Chandra R. Bhat ,&nbsp;Sulagna Ghosh ,&nbsp;Abdul Rawoof Pinjari\",\"doi\":\"10.1016/j.jocm.2024.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In travel choice models, variables describing alternative attributes such as travel time may have to be specified as stochastic because the analyst may not have accurate measurements of the attribute values considered by the decision-maker. Such stochasticity in alternative attributes is different from unobserved heterogeneity in the coefficients representing travellers’ response to those attributes. Specifying only one of these as random while keeping the other fixed can potentially result in biased parameter estimates, inferior goodness-of-fit, and distorted information for policy analysis. Therefore, in this study, we propose an integrated choice and stochastic variable modelling framework with random coefficients (i.e., an <em>ICSV-RC</em> framework) that allows the analyst to accommodate stochasticity in alternative attributes and random coefficients on such attributes. In addition, we show that ignoring either source of stochasticity – stochasticity in alternative attributes or unobserved heterogeneity in response to the attributes – results in models with inferior goodness-of-fit and a systematic bias in all parameter estimates. We demonstrate this using simulation experiments for two different travel choice settings, one involving labelled mode choice alternatives and the other involving unlabelled route choice alternatives. In addition, we present an empirical analysis in the context of truck route choice to highlight the importance of accommodating both sources of variability – stochasticity in travel times and random heterogeneity in response to travel times.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"51 \",\"pages\":\"Article 100488\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534524000204\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534524000204","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在旅行选择模型中,描述旅行时间等替代属性的变量可能必须指定为随机变量, 因为分析人员可能无法准确测量决策者所考虑的属性值。替代属性的这种随机性不同于代表旅行者对这些属性的反应的系数中的无观测异质性。如果只将其中一个指定为随机,而另一个保持固定,则可能导致参数估计偏差、拟合度较差以及政策分析信息失真。因此,在本研究中,我们提出了一个具有随机系数的综合选择和随机变量建模框架(即 ICSV-RC 框架),该框架允许分析师考虑替代属性的随机性以及这些属性的随机系数。此外,我们还证明,忽略随机性的任一来源--替代属性的随机性或对属性响应的未观察异质性--都会导致模型拟合优度降低,所有参数估计都会出现系统性偏差。我们利用两种不同出行选择设置的模拟实验证明了这一点,一种涉及有标签的模式选择替代品,另一种涉及无标签的路线选择替代品。此外,我们还以卡车路线选择为背景进行了实证分析,以突出考虑两种变异性来源的重要性--旅行时间的随机性和对旅行时间反应的随机异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice models with stochastic variables and random coefficients

In travel choice models, variables describing alternative attributes such as travel time may have to be specified as stochastic because the analyst may not have accurate measurements of the attribute values considered by the decision-maker. Such stochasticity in alternative attributes is different from unobserved heterogeneity in the coefficients representing travellers’ response to those attributes. Specifying only one of these as random while keeping the other fixed can potentially result in biased parameter estimates, inferior goodness-of-fit, and distorted information for policy analysis. Therefore, in this study, we propose an integrated choice and stochastic variable modelling framework with random coefficients (i.e., an ICSV-RC framework) that allows the analyst to accommodate stochasticity in alternative attributes and random coefficients on such attributes. In addition, we show that ignoring either source of stochasticity – stochasticity in alternative attributes or unobserved heterogeneity in response to the attributes – results in models with inferior goodness-of-fit and a systematic bias in all parameter estimates. We demonstrate this using simulation experiments for two different travel choice settings, one involving labelled mode choice alternatives and the other involving unlabelled route choice alternatives. In addition, we present an empirical analysis in the context of truck route choice to highlight the importance of accommodating both sources of variability – stochasticity in travel times and random heterogeneity in response to travel times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信