Wen Xiao, Reem Halabi, Chia-Ho Lin, Mohammad Nazim, Kyu-Hyeon Yeom, Douglas L. Black
{"title":"在神经元中,lncRNA Malat1 作为编码小肽的局部 mRNA 被运输到细胞质中","authors":"Wen Xiao, Reem Halabi, Chia-Ho Lin, Mohammad Nazim, Kyu-Hyeon Yeom, Douglas L. Black","doi":"10.1101/gad.351557.124","DOIUrl":null,"url":null,"abstract":"Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis‐associated lung adenocarcinoma transcript 1 (<em>MALAT1</em>) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of <em>Malat1</em> RNA redistributes to the cytoplasm. Depletion of <em>Malat1</em> using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating <em>Malat1</em> in their regulation. Neuronal <em>Malat1</em> is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5′ region of <em>Malat1</em> containing short open reading frames. The upstream-most reading frame (M1) of the <em>Malat1</em> locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that <em>Malat1</em> serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"146 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons\",\"authors\":\"Wen Xiao, Reem Halabi, Chia-Ho Lin, Mohammad Nazim, Kyu-Hyeon Yeom, Douglas L. Black\",\"doi\":\"10.1101/gad.351557.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis‐associated lung adenocarcinoma transcript 1 (<em>MALAT1</em>) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of <em>Malat1</em> RNA redistributes to the cytoplasm. Depletion of <em>Malat1</em> using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating <em>Malat1</em> in their regulation. Neuronal <em>Malat1</em> is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5′ region of <em>Malat1</em> containing short open reading frames. The upstream-most reading frame (M1) of the <em>Malat1</em> locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that <em>Malat1</em> serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.\",\"PeriodicalId\":12591,\"journal\":{\"name\":\"Genes & development\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gad.351557.124\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.351557.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons
Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5′ region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).