{"title":"基于物理信息机器学习的混合电磁优化方法","authors":"Yanan Liu;Hongliang Li;Jian-Ming Jin","doi":"10.1109/JMMCT.2024.3385451","DOIUrl":null,"url":null,"abstract":"In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"157-165"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493126","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning\",\"authors\":\"Yanan Liu;Hongliang Li;Jian-Ming Jin\",\"doi\":\"10.1109/JMMCT.2024.3385451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"9 \",\"pages\":\"157-165\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493126\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10493126/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10493126/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提出了一种基于遗传算法(GA)和梯度优化(grad-opt)混合的优化方法,并通过物理信息机器学习模型加以促进。在所提出的方法中,缓慢但全局的遗传算法被用作预筛选工具,为快速但局部的梯度优化提供良好的初始值。我们引入了一个稳健的指标来衡量作为起点的设计的优劣,并使用一组控制参数来微调优化动态。我们利用带有特征值分析扩展的机器学习(ML w/AEE)模型将两部分无缝集成,并通过加速 GA 中的前向评估和 grad-opt 中的梯度计算来加速优化过程。我们采用分而治之的策略进一步提高建模效率,加快设计过程,并建议使用融合模块来实现端到端的梯度传播。我们还列举了两个数值示例,以说明与传统方法相比,所提方法的稳健性和高效性。
A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning
In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.