Chenyu Wang , Ankun Luo , Shen Qu , Xiangyang Liang , Binhu Xiao , Wenping Mu , Yuqin Wang , Ruihong Yu
{"title":"人为过程导致多含水层系统地下水中硫酸盐的时空变化:矿井排水造成的稀释","authors":"Chenyu Wang , Ankun Luo , Shen Qu , Xiangyang Liang , Binhu Xiao , Wenping Mu , Yuqin Wang , Ruihong Yu","doi":"10.1016/j.jconhyd.2024.104358","DOIUrl":null,"url":null,"abstract":"<div><p>The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ<sup>34</sup>S<sub>SO4</sub>, δ<sup>18</sup>O<sub>SO4</sub>, δD, and δ<sup>18</sup>O<sub>water</sub>) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"264 ","pages":"Article 104358"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic processes drive spatiotemporal variability of sulfate in groundwater from a multi-aquifer system: Dilution caused by mine drainage\",\"authors\":\"Chenyu Wang , Ankun Luo , Shen Qu , Xiangyang Liang , Binhu Xiao , Wenping Mu , Yuqin Wang , Ruihong Yu\",\"doi\":\"10.1016/j.jconhyd.2024.104358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ<sup>34</sup>S<sub>SO4</sub>, δ<sup>18</sup>O<sub>SO4</sub>, δD, and δ<sup>18</sup>O<sub>water</sub>) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"264 \",\"pages\":\"Article 104358\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000627\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000627","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Anthropogenic processes drive spatiotemporal variability of sulfate in groundwater from a multi-aquifer system: Dilution caused by mine drainage
The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.