论深层扩张-侵蚀-线性模型的海面温度预报问题

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ricardo de A. Araújo , Paulo S.G. de Mattos Neto , Nadia Nedjah , Sergio C.B. Soares
{"title":"论深层扩张-侵蚀-线性模型的海面温度预报问题","authors":"Ricardo de A. Araújo ,&nbsp;Paulo S.G. de Mattos Neto ,&nbsp;Nadia Nedjah ,&nbsp;Sergio C.B. Soares","doi":"10.1016/j.bdr.2024.100455","DOIUrl":null,"url":null,"abstract":"<div><p>The sea surface temperature (SST) is considered an important measure for detecting changes in climate and marine ecosystems. So, its forecasting is essential for supporting governmental strategies to avoid side effects on the global population. In this paper, we analyze the SST time series and suggest that a combination between a linear component and a nonlinear component with long-term dependency can better represent it. Based on this assumption, we propose a deep neural network architecture with dilation-erosion-linear (DEL) processing units to deal with this particular kind of time series. An empirical analysis is performed in this work using three SST time series, where we explore three statistical measures. The experimental results demonstrate that the proposed model outperformed recent and classical literature forecasting techniques according to well-known performance metrics.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sea Surface Temperature Forecasting Problem with Deep Dilation-Erosion-Linear Models\",\"authors\":\"Ricardo de A. Araújo ,&nbsp;Paulo S.G. de Mattos Neto ,&nbsp;Nadia Nedjah ,&nbsp;Sergio C.B. Soares\",\"doi\":\"10.1016/j.bdr.2024.100455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sea surface temperature (SST) is considered an important measure for detecting changes in climate and marine ecosystems. So, its forecasting is essential for supporting governmental strategies to avoid side effects on the global population. In this paper, we analyze the SST time series and suggest that a combination between a linear component and a nonlinear component with long-term dependency can better represent it. Based on this assumption, we propose a deep neural network architecture with dilation-erosion-linear (DEL) processing units to deal with this particular kind of time series. An empirical analysis is performed in this work using three SST time series, where we explore three statistical measures. The experimental results demonstrate that the proposed model outperformed recent and classical literature forecasting techniques according to well-known performance metrics.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000315\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000315","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

海面温度(SST)被认为是检测气候和海洋生态系统变化的重要指标。因此,对其进行预测对于支持政府避免对全球人口造成副作用的战略至关重要。在本文中,我们分析了 SST 时间序列,并提出线性分量和非线性分量之间的组合具有长期依赖性,可以更好地代表 SST。基于这一假设,我们提出了一种带有扩张-侵蚀-线性(DEL)处理单元的深度神经网络架构,以处理这种特殊的时间序列。在这项工作中,我们使用三个 SST 时间序列进行了实证分析,探索了三种统计量。实验结果表明,根据著名的性能指标,所提出的模型优于最新的经典文献预测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sea Surface Temperature Forecasting Problem with Deep Dilation-Erosion-Linear Models

The sea surface temperature (SST) is considered an important measure for detecting changes in climate and marine ecosystems. So, its forecasting is essential for supporting governmental strategies to avoid side effects on the global population. In this paper, we analyze the SST time series and suggest that a combination between a linear component and a nonlinear component with long-term dependency can better represent it. Based on this assumption, we propose a deep neural network architecture with dilation-erosion-linear (DEL) processing units to deal with this particular kind of time series. An empirical analysis is performed in this work using three SST time series, where we explore three statistical measures. The experimental results demonstrate that the proposed model outperformed recent and classical literature forecasting techniques according to well-known performance metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信