Guangle Zhang, Yuan Zhang, Ling Li, Jiaying Zhou, Honglin Chen, Jinwen Ji, Yanru Li, Yue Cao, Zhihui Xu, Cong Pian
{"title":"利用基于图形的变换器模型探索新型芬太尼类似物","authors":"Guangle Zhang, Yuan Zhang, Ling Li, Jiaying Zhou, Honglin Chen, Jinwen Ji, Yanru Li, Yue Cao, Zhihui Xu, Cong Pian","doi":"10.1007/s12539-024-00623-0","DOIUrl":null,"url":null,"abstract":"<p>The structures of fentanyl and its analogues are easy to be modified and few types have been included in database so far, which allow criminals to avoid the supervision of relevant departments. This paper introduces a molecular graph-based transformer model, which is combined with a data augmentation method based on substructure replacement to generate novel fentanyl analogues. 140,000 molecules were generated, and after a set of screening, 36,799 potential fentanyl analogues were finally obtained. We calculated the molecular properties of 36,799 potential fentanyl analogues. The results showed that the model could learn some properties of original fentanyl molecules. We compared the generated molecules from transformer model and data augmentation method based on substructure replacement with those generated by the other two molecular generation models based on deep learning, and found that the model in this paper can generate more novel potential fentanyl analogues. Finally, the findings of the paper indicate that transformer model based on molecular graph helps us explore the structure of potential fentanyl molecules as well as understand distribution of original molecules of fentanyl.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"52 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Novel Fentanyl Analogues Using a Graph-Based Transformer Model\",\"authors\":\"Guangle Zhang, Yuan Zhang, Ling Li, Jiaying Zhou, Honglin Chen, Jinwen Ji, Yanru Li, Yue Cao, Zhihui Xu, Cong Pian\",\"doi\":\"10.1007/s12539-024-00623-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structures of fentanyl and its analogues are easy to be modified and few types have been included in database so far, which allow criminals to avoid the supervision of relevant departments. This paper introduces a molecular graph-based transformer model, which is combined with a data augmentation method based on substructure replacement to generate novel fentanyl analogues. 140,000 molecules were generated, and after a set of screening, 36,799 potential fentanyl analogues were finally obtained. We calculated the molecular properties of 36,799 potential fentanyl analogues. The results showed that the model could learn some properties of original fentanyl molecules. We compared the generated molecules from transformer model and data augmentation method based on substructure replacement with those generated by the other two molecular generation models based on deep learning, and found that the model in this paper can generate more novel potential fentanyl analogues. Finally, the findings of the paper indicate that transformer model based on molecular graph helps us explore the structure of potential fentanyl molecules as well as understand distribution of original molecules of fentanyl.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00623-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00623-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Exploring Novel Fentanyl Analogues Using a Graph-Based Transformer Model
The structures of fentanyl and its analogues are easy to be modified and few types have been included in database so far, which allow criminals to avoid the supervision of relevant departments. This paper introduces a molecular graph-based transformer model, which is combined with a data augmentation method based on substructure replacement to generate novel fentanyl analogues. 140,000 molecules were generated, and after a set of screening, 36,799 potential fentanyl analogues were finally obtained. We calculated the molecular properties of 36,799 potential fentanyl analogues. The results showed that the model could learn some properties of original fentanyl molecules. We compared the generated molecules from transformer model and data augmentation method based on substructure replacement with those generated by the other two molecular generation models based on deep learning, and found that the model in this paper can generate more novel potential fentanyl analogues. Finally, the findings of the paper indicate that transformer model based on molecular graph helps us explore the structure of potential fentanyl molecules as well as understand distribution of original molecules of fentanyl.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.