通过隐性解链实现一般二项偶阶线性差分方程的临界性

Pub Date : 2024-04-26 DOI:10.1002/mana.202300090
Jan Jekl
{"title":"通过隐性解链实现一般二项偶阶线性差分方程的临界性","authors":"Jan Jekl","doi":"10.1002/mana.202300090","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the author investigates particular disconjugate even-order linear difference equations with two terms and classify them based on the properties of their recessive solutions at plus and minus infinity. The main theorem described states that the studied equation is <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mi>p</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-p+1)$</annotation>\n </semantics></math>-critical whenever a specific second-order linear difference equation is <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-critical. In the proof, the author derived closed-form solutions for the studied equation wherein the solutions of the said second-order equation appear. Furthermore, the solutions were organized, in order to determine recessive solutions, into a linear chain by sequence ordering that compares the solutions at <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\pm \\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criticality of general two-term even-order linear difference equation via a chain of recessive solutions\",\"authors\":\"Jan Jekl\",\"doi\":\"10.1002/mana.202300090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the author investigates particular disconjugate even-order linear difference equations with two terms and classify them based on the properties of their recessive solutions at plus and minus infinity. The main theorem described states that the studied equation is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>p</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-p+1)$</annotation>\\n </semantics></math>-critical whenever a specific second-order linear difference equation is <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-critical. In the proof, the author derived closed-form solutions for the studied equation wherein the solutions of the said second-order equation appear. Furthermore, the solutions were organized, in order to determine recessive solutions, into a linear chain by sequence ordering that compares the solutions at <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\pm \\\\infty$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,作者研究了具有两个项的特定不共轭偶阶线性差分方程,并根据它们在正无穷大和负无穷大处的隐式解的性质对它们进行了分类。所描述的主要定理指出,只要特定的二阶线性差分方程是-临界的,所研究的方程就是-临界的。在证明过程中,作者得出了所研究方程的闭式解,其中出现了上述二阶方程的解。此外,为了确定隐性解,作者还通过序列排序将这些解组织成一个线性链,比较了......处的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Criticality of general two-term even-order linear difference equation via a chain of recessive solutions

In this paper, the author investigates particular disconjugate even-order linear difference equations with two terms and classify them based on the properties of their recessive solutions at plus and minus infinity. The main theorem described states that the studied equation is ( k p + 1 ) $(k-p+1)$ -critical whenever a specific second-order linear difference equation is p $p$ -critical. In the proof, the author derived closed-form solutions for the studied equation wherein the solutions of the said second-order equation appear. Furthermore, the solutions were organized, in order to determine recessive solutions, into a linear chain by sequence ordering that compares the solutions at ± $\pm \infty$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信