Oluwaseun Suleimon Adedeji, Aung Htay Naing, Jova Riza Campol, Kyeung Il Park, Chang Kil Kim
{"title":"影响两种不同康乃馨原生质体产量和胼胝体诱导的因素的影响","authors":"Oluwaseun Suleimon Adedeji, Aung Htay Naing, Jova Riza Campol, Kyeung Il Park, Chang Kil Kim","doi":"10.1007/s11816-024-00903-7","DOIUrl":null,"url":null,"abstract":"<p>This study aims to establish an efficient protocol for protoplast isolation, cell division, and callus induction in two carnation cultivars, Chabaud and Giant Chabaud, by examining the influence of different types of plant tissue, enzyme concentrations, incubation times, cotyledon ages, and medium compositions. Our results indicate that protoplast yield varies significantly between different plant tissues, with true leaves offering the highest yield and viability, especially under a 0.1% driselase concentration and a 6-h incubation time. We observed that increasing the driselase concentration to 1.0% significantly reduced protoplast yields in all tissues tested. In addition, the age of the cotyledons notably affected protoplast yield, with younger cotyledons providing higher yields. The Murashige and Skoog medium supplemented with 1 mg/L zeatin and 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) proved to be the most effective for promoting cell division and colony formation from protoplasts derived from cotyledons and true leaves. The study also found that plant growth regulators (PGRs) significantly influence callus proliferation, with differences observed between protoplast sources.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":"77 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of factors affecting the induction of high protoplast yield and callus induction in two different carnations\",\"authors\":\"Oluwaseun Suleimon Adedeji, Aung Htay Naing, Jova Riza Campol, Kyeung Il Park, Chang Kil Kim\",\"doi\":\"10.1007/s11816-024-00903-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to establish an efficient protocol for protoplast isolation, cell division, and callus induction in two carnation cultivars, Chabaud and Giant Chabaud, by examining the influence of different types of plant tissue, enzyme concentrations, incubation times, cotyledon ages, and medium compositions. Our results indicate that protoplast yield varies significantly between different plant tissues, with true leaves offering the highest yield and viability, especially under a 0.1% driselase concentration and a 6-h incubation time. We observed that increasing the driselase concentration to 1.0% significantly reduced protoplast yields in all tissues tested. In addition, the age of the cotyledons notably affected protoplast yield, with younger cotyledons providing higher yields. The Murashige and Skoog medium supplemented with 1 mg/L zeatin and 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) proved to be the most effective for promoting cell division and colony formation from protoplasts derived from cotyledons and true leaves. The study also found that plant growth regulators (PGRs) significantly influence callus proliferation, with differences observed between protoplast sources.</p>\",\"PeriodicalId\":20216,\"journal\":{\"name\":\"Plant Biotechnology Reports\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11816-024-00903-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00903-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Influences of factors affecting the induction of high protoplast yield and callus induction in two different carnations
This study aims to establish an efficient protocol for protoplast isolation, cell division, and callus induction in two carnation cultivars, Chabaud and Giant Chabaud, by examining the influence of different types of plant tissue, enzyme concentrations, incubation times, cotyledon ages, and medium compositions. Our results indicate that protoplast yield varies significantly between different plant tissues, with true leaves offering the highest yield and viability, especially under a 0.1% driselase concentration and a 6-h incubation time. We observed that increasing the driselase concentration to 1.0% significantly reduced protoplast yields in all tissues tested. In addition, the age of the cotyledons notably affected protoplast yield, with younger cotyledons providing higher yields. The Murashige and Skoog medium supplemented with 1 mg/L zeatin and 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) proved to be the most effective for promoting cell division and colony formation from protoplasts derived from cotyledons and true leaves. The study also found that plant growth regulators (PGRs) significantly influence callus proliferation, with differences observed between protoplast sources.
期刊介绍:
Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.