Luis Gabriel Ordoñez Rendón, Ina Neugebauer, Camille Thomas, Massimo Chiaradia, Nicolas Waldmann, Daniel Ariztegui
{"title":"火地岛寡营养深水湖沉积物氧化还原动力学:铁同位素的启示","authors":"Luis Gabriel Ordoñez Rendón, Ina Neugebauer, Camille Thomas, Massimo Chiaradia, Nicolas Waldmann, Daniel Ariztegui","doi":"10.1007/s10933-024-00316-0","DOIUrl":null,"url":null,"abstract":"<p>For long time in the history of Earth, ferruginous conditions governed the oceans. With the rise of oxygen during the Proterozoic era and the subsequent evolution of living organisms, worldwide deposition of iron formations occurred. These sedimentary units reveal the transition into oxic oceans, passing by local and transitory euxinic conditions, especially in coastal shelves. Constraining the iron cycle and the biogeochemical processes occurring in present and past ferruginous basins helps answering some of the question regarding global oxygenation, the evolution of life and past climate changes. Therefore, Fe speciation and Fe isotopes in both Proterozoic and recent sedimentary records have been widely used to reconstruct past basin dynamics and redox conditions in the sediment–water interface. However, sedimentation and early diagenesis can alter paleoredox proxies and their primary climate signals. In this work, we disentangled alteration processes occurring at the redox front below the sediment–water interface of a ventilated deep-water lake (Lago Fagnano, Argentina/Chile). A sequential extraction protocol was applied to characterize two reactive Fe pools: Fe oxyhydroxides and reduced iron. Subsequently, Fe isotopes were constrained to determine the main processes mobilizing Fe. At the redox front, ferric minerals reach a <i>δ</i><sup>56</sup>Fe value of − 1.3‰ resulting from oxidation of dissolved Fe likely following a Rayleigh distillation effect. Dissolved Fe is produced right below via Fe reduction, as shown by the low ferric Fe content. Our observations delineate a redox cycle and a redox horizon undergoing constant upward migration, initiated by regular sedimentation. However, during events of increased rapid sedimentation (e.g., seismites) this dynamic cycle is interrupted inducing full or partial preservation of the Fe-rich redox front. In such case, oxidation of dissolved Fe is interrupted and can be recycled in ferrous minerals, such as Fe monosulfides and amorphous phases with <i>δ</i><sup>56</sup>Fe values down to − 1.7 ‰. These findings have significant implications for the recording of biogeochemical cycles in the geological past, the use of Fe isotopes in freshwater-lake sediments for paleoclimate studies, and the progress of our knowledge regarding the geochemistry of past oceans.</p>","PeriodicalId":16658,"journal":{"name":"Journal of Paleolimnology","volume":"23 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sediment-redox dynamics in an oligotrophic deep-water lake in Tierra del Fuego: insights from Fe isotopes\",\"authors\":\"Luis Gabriel Ordoñez Rendón, Ina Neugebauer, Camille Thomas, Massimo Chiaradia, Nicolas Waldmann, Daniel Ariztegui\",\"doi\":\"10.1007/s10933-024-00316-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For long time in the history of Earth, ferruginous conditions governed the oceans. With the rise of oxygen during the Proterozoic era and the subsequent evolution of living organisms, worldwide deposition of iron formations occurred. These sedimentary units reveal the transition into oxic oceans, passing by local and transitory euxinic conditions, especially in coastal shelves. Constraining the iron cycle and the biogeochemical processes occurring in present and past ferruginous basins helps answering some of the question regarding global oxygenation, the evolution of life and past climate changes. Therefore, Fe speciation and Fe isotopes in both Proterozoic and recent sedimentary records have been widely used to reconstruct past basin dynamics and redox conditions in the sediment–water interface. However, sedimentation and early diagenesis can alter paleoredox proxies and their primary climate signals. In this work, we disentangled alteration processes occurring at the redox front below the sediment–water interface of a ventilated deep-water lake (Lago Fagnano, Argentina/Chile). A sequential extraction protocol was applied to characterize two reactive Fe pools: Fe oxyhydroxides and reduced iron. Subsequently, Fe isotopes were constrained to determine the main processes mobilizing Fe. At the redox front, ferric minerals reach a <i>δ</i><sup>56</sup>Fe value of − 1.3‰ resulting from oxidation of dissolved Fe likely following a Rayleigh distillation effect. Dissolved Fe is produced right below via Fe reduction, as shown by the low ferric Fe content. Our observations delineate a redox cycle and a redox horizon undergoing constant upward migration, initiated by regular sedimentation. However, during events of increased rapid sedimentation (e.g., seismites) this dynamic cycle is interrupted inducing full or partial preservation of the Fe-rich redox front. In such case, oxidation of dissolved Fe is interrupted and can be recycled in ferrous minerals, such as Fe monosulfides and amorphous phases with <i>δ</i><sup>56</sup>Fe values down to − 1.7 ‰. These findings have significant implications for the recording of biogeochemical cycles in the geological past, the use of Fe isotopes in freshwater-lake sediments for paleoclimate studies, and the progress of our knowledge regarding the geochemistry of past oceans.</p>\",\"PeriodicalId\":16658,\"journal\":{\"name\":\"Journal of Paleolimnology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Paleolimnology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10933-024-00316-0\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Paleolimnology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10933-024-00316-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sediment-redox dynamics in an oligotrophic deep-water lake in Tierra del Fuego: insights from Fe isotopes
For long time in the history of Earth, ferruginous conditions governed the oceans. With the rise of oxygen during the Proterozoic era and the subsequent evolution of living organisms, worldwide deposition of iron formations occurred. These sedimentary units reveal the transition into oxic oceans, passing by local and transitory euxinic conditions, especially in coastal shelves. Constraining the iron cycle and the biogeochemical processes occurring in present and past ferruginous basins helps answering some of the question regarding global oxygenation, the evolution of life and past climate changes. Therefore, Fe speciation and Fe isotopes in both Proterozoic and recent sedimentary records have been widely used to reconstruct past basin dynamics and redox conditions in the sediment–water interface. However, sedimentation and early diagenesis can alter paleoredox proxies and their primary climate signals. In this work, we disentangled alteration processes occurring at the redox front below the sediment–water interface of a ventilated deep-water lake (Lago Fagnano, Argentina/Chile). A sequential extraction protocol was applied to characterize two reactive Fe pools: Fe oxyhydroxides and reduced iron. Subsequently, Fe isotopes were constrained to determine the main processes mobilizing Fe. At the redox front, ferric minerals reach a δ56Fe value of − 1.3‰ resulting from oxidation of dissolved Fe likely following a Rayleigh distillation effect. Dissolved Fe is produced right below via Fe reduction, as shown by the low ferric Fe content. Our observations delineate a redox cycle and a redox horizon undergoing constant upward migration, initiated by regular sedimentation. However, during events of increased rapid sedimentation (e.g., seismites) this dynamic cycle is interrupted inducing full or partial preservation of the Fe-rich redox front. In such case, oxidation of dissolved Fe is interrupted and can be recycled in ferrous minerals, such as Fe monosulfides and amorphous phases with δ56Fe values down to − 1.7 ‰. These findings have significant implications for the recording of biogeochemical cycles in the geological past, the use of Fe isotopes in freshwater-lake sediments for paleoclimate studies, and the progress of our knowledge regarding the geochemistry of past oceans.
期刊介绍:
The realization that a historical perspective is often useful, if not essential, to the understanding of most limnological processes has resulted in the recent surge of interest in paleolimnology. The main aim of the Journal of Paleolimnology is the provision of a vehicle for the rapid dissemination of original scientific work dealing with the reconstruction of lake histories. Although the majority of papers deal with lakes, paleoenvironmental studies of river, wetland, peatland and estuary systems are also eligible for publication.
The Journal of Paleolimnology, like the subject itself, is multidisciplinary in nature, and papers are published that are concerned with all aspects (e.g. biological, chemical, physical, geological, etc.) of the reconstruction and interpretation of lake histories. Both applied and more theoretical papers are equally encouraged. The Journal of Paleolimnology will continue to be a major repository for papers dealing with climatic change, as well as other pressing topics, such as global environmental change, lake acidification, eutrophication, long-term monitoring, and other aspects of lake ontogeny. Taxonomic and methodological papers are also acceptable provided they are of relatively broad interest. New equipment designs are frequently featured. In addition to original data and ideas, the Journal of Paleolimnology also publishes review articles, commentaries and program announcements. A relevant Book Review Section is also featured.