{"title":"取代的 4H-3,1-苯并恶嗪-4-酮衍生物作为凝血酶 G 的抑制剂","authors":"Kholoud F. Aliter, Rami A. Al-Horani","doi":"10.2174/0115734064300678240408084822","DOIUrl":null,"url":null,"abstract":"Background: Cathepsin G (CatG) is a cationic serine protease with a wide substrate specificity. CatG has been reported to play a role in several pathologies, including rheumatoid arthritis, ischemic reperfusion injury, acute respiratory distress syndrome, and cystic fibrosis, among others. Objective: We aim to develop a new class of CatG inhibitors and evaluate their potency and selectivity against a series of serine proteases. Methods: We exploited chemical synthesis as well as chromogenic substrate hydrolysis assays to construct and evaluate the new inhibitors. Results: In this communication, we report on a new class of CatG inhibitors of 4H-3,1-benzoxazin- 4-one derivatives. We constructed a small library of seven substituted 4H-3,1-benzoxazin-4-one derivatives and identified their inhibition potential against CatG. Five molecules were identified as CatG inhibitors with values of 0.84-5.5 μM. Inhibitor 2 was the most potent, with an IC50 of 0.84 ± 0.11 μM and significant selectivity over representative serine proteases of thrombin, factor XIa, factor XIIIa, and kallikrein. Conclusion: Thus, we propose this inhibitor as a lead molecule to guide subsequent efforts to develop clinically relevant potent and selective CatG inhibitors for use as anti-inflammatory agents.","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substituted 4H-3,1-benzoxazine-4-one Derivatives as Inhibitors of Cathepsin G\",\"authors\":\"Kholoud F. Aliter, Rami A. Al-Horani\",\"doi\":\"10.2174/0115734064300678240408084822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Cathepsin G (CatG) is a cationic serine protease with a wide substrate specificity. CatG has been reported to play a role in several pathologies, including rheumatoid arthritis, ischemic reperfusion injury, acute respiratory distress syndrome, and cystic fibrosis, among others. Objective: We aim to develop a new class of CatG inhibitors and evaluate their potency and selectivity against a series of serine proteases. Methods: We exploited chemical synthesis as well as chromogenic substrate hydrolysis assays to construct and evaluate the new inhibitors. Results: In this communication, we report on a new class of CatG inhibitors of 4H-3,1-benzoxazin- 4-one derivatives. We constructed a small library of seven substituted 4H-3,1-benzoxazin-4-one derivatives and identified their inhibition potential against CatG. Five molecules were identified as CatG inhibitors with values of 0.84-5.5 μM. Inhibitor 2 was the most potent, with an IC50 of 0.84 ± 0.11 μM and significant selectivity over representative serine proteases of thrombin, factor XIa, factor XIIIa, and kallikrein. Conclusion: Thus, we propose this inhibitor as a lead molecule to guide subsequent efforts to develop clinically relevant potent and selective CatG inhibitors for use as anti-inflammatory agents.\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064300678240408084822\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064300678240408084822","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Substituted 4H-3,1-benzoxazine-4-one Derivatives as Inhibitors of Cathepsin G
Background: Cathepsin G (CatG) is a cationic serine protease with a wide substrate specificity. CatG has been reported to play a role in several pathologies, including rheumatoid arthritis, ischemic reperfusion injury, acute respiratory distress syndrome, and cystic fibrosis, among others. Objective: We aim to develop a new class of CatG inhibitors and evaluate their potency and selectivity against a series of serine proteases. Methods: We exploited chemical synthesis as well as chromogenic substrate hydrolysis assays to construct and evaluate the new inhibitors. Results: In this communication, we report on a new class of CatG inhibitors of 4H-3,1-benzoxazin- 4-one derivatives. We constructed a small library of seven substituted 4H-3,1-benzoxazin-4-one derivatives and identified their inhibition potential against CatG. Five molecules were identified as CatG inhibitors with values of 0.84-5.5 μM. Inhibitor 2 was the most potent, with an IC50 of 0.84 ± 0.11 μM and significant selectivity over representative serine proteases of thrombin, factor XIa, factor XIIIa, and kallikrein. Conclusion: Thus, we propose this inhibitor as a lead molecule to guide subsequent efforts to develop clinically relevant potent and selective CatG inhibitors for use as anti-inflammatory agents.
期刊介绍:
Aims & Scope
Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.