{"title":"异病同治:西尼茯苓煎剂治疗肝癌和慢性心力衰竭的分子机制","authors":"Zhe Zhao, Huiying Yue, Xiaohua Cui","doi":"10.1155/2024/9958258","DOIUrl":null,"url":null,"abstract":"Poria sini decoction (PSD), a significant traditional Chinese herbal formula, is effective in liver cancer (LC) and chronic heart failure (CHF); however, little is known about its concurrent targeting mechanism. <i>Methods</i>. This study analyzed the potential molecular mechanism of PSD against the two distinct diseases using network pharmacology approaches, including multidatabase search, pharmacokinetic screening, network construction analysis, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and molecular docking to elaborate the active components, signaling pathways, and potential mechanisms of PSD in the treatment of both LC and CHF. <i>Results</i>. A total of 155 active components and 193 potential targets in PSD were identified. Bioinformatics analysis revealed that quercetin, isorhamnetin, and naringenin, etc. may be potential candidate agents. TNF, AKT1, and IL6, etc. could become potential therapeutic targets. TNF-<i>α</i>, NF-<i>κ</i>B, PI3K-AKT, and TRP signaling pathways might play an important role in PSD against LC and CHF. Molecular docking results showed that most screened active compounds could embed itself into target proteins with a high binding affinity, and the hydrogen bonds number ≥3 indicated a more stable conformation of the compounds and target proteins. Overall, quercetin and isorhamnetin were the main active components, and TNF and AKT1 were the primary targets for PSD treatment of LC and CHF. <i>Conclusions</i>. This study illustrated that quercetin contained in PSD played an important role in the treatment of LC and CHF by acting on the key gene of TP53 and downregulating the PI3K-AKT signaling pathway.","PeriodicalId":12236,"journal":{"name":"Evidence-based Complementary and Alternative Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotherapy for Heteropathy: A Molecular Mechanism of Poria Sini Decoction for Treatment of Liver Cancer and Chronic Heart Failure\",\"authors\":\"Zhe Zhao, Huiying Yue, Xiaohua Cui\",\"doi\":\"10.1155/2024/9958258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poria sini decoction (PSD), a significant traditional Chinese herbal formula, is effective in liver cancer (LC) and chronic heart failure (CHF); however, little is known about its concurrent targeting mechanism. <i>Methods</i>. This study analyzed the potential molecular mechanism of PSD against the two distinct diseases using network pharmacology approaches, including multidatabase search, pharmacokinetic screening, network construction analysis, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and molecular docking to elaborate the active components, signaling pathways, and potential mechanisms of PSD in the treatment of both LC and CHF. <i>Results</i>. A total of 155 active components and 193 potential targets in PSD were identified. Bioinformatics analysis revealed that quercetin, isorhamnetin, and naringenin, etc. may be potential candidate agents. TNF, AKT1, and IL6, etc. could become potential therapeutic targets. TNF-<i>α</i>, NF-<i>κ</i>B, PI3K-AKT, and TRP signaling pathways might play an important role in PSD against LC and CHF. Molecular docking results showed that most screened active compounds could embed itself into target proteins with a high binding affinity, and the hydrogen bonds number ≥3 indicated a more stable conformation of the compounds and target proteins. Overall, quercetin and isorhamnetin were the main active components, and TNF and AKT1 were the primary targets for PSD treatment of LC and CHF. <i>Conclusions</i>. This study illustrated that quercetin contained in PSD played an important role in the treatment of LC and CHF by acting on the key gene of TP53 and downregulating the PI3K-AKT signaling pathway.\",\"PeriodicalId\":12236,\"journal\":{\"name\":\"Evidence-based Complementary and Alternative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evidence-based Complementary and Alternative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9958258\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evidence-based Complementary and Alternative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/9958258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Homotherapy for Heteropathy: A Molecular Mechanism of Poria Sini Decoction for Treatment of Liver Cancer and Chronic Heart Failure
Poria sini decoction (PSD), a significant traditional Chinese herbal formula, is effective in liver cancer (LC) and chronic heart failure (CHF); however, little is known about its concurrent targeting mechanism. Methods. This study analyzed the potential molecular mechanism of PSD against the two distinct diseases using network pharmacology approaches, including multidatabase search, pharmacokinetic screening, network construction analysis, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and molecular docking to elaborate the active components, signaling pathways, and potential mechanisms of PSD in the treatment of both LC and CHF. Results. A total of 155 active components and 193 potential targets in PSD were identified. Bioinformatics analysis revealed that quercetin, isorhamnetin, and naringenin, etc. may be potential candidate agents. TNF, AKT1, and IL6, etc. could become potential therapeutic targets. TNF-α, NF-κB, PI3K-AKT, and TRP signaling pathways might play an important role in PSD against LC and CHF. Molecular docking results showed that most screened active compounds could embed itself into target proteins with a high binding affinity, and the hydrogen bonds number ≥3 indicated a more stable conformation of the compounds and target proteins. Overall, quercetin and isorhamnetin were the main active components, and TNF and AKT1 were the primary targets for PSD treatment of LC and CHF. Conclusions. This study illustrated that quercetin contained in PSD played an important role in the treatment of LC and CHF by acting on the key gene of TP53 and downregulating the PI3K-AKT signaling pathway.
期刊介绍:
Evidence-Based Complementary and Alternative Medicine (eCAM) is an international, peer-reviewed journal that seeks to understand the sources and to encourage rigorous research in this new, yet ancient world of complementary and alternative medicine.
The journal seeks to apply scientific rigor to the study of complementary and alternative medicine (CAM) modalities, particularly traditional Asian healing systems. eCAM emphasizes health outcome, while documenting biological mechanisms of action. The journal is devoted to the advancement of science in the field of basic research, clinical studies, methodology or scientific theory in diverse areas of Biomedical Sciences. The journal does not consider articles on homeopathy.