有序向量空间中的无界有序收敛

IF 1.3 4区 数学 Q1 MATHEMATICS
Masoumeh Ebrahimzadeh, Kazem Haghnejad Azar
{"title":"有序向量空间中的无界有序收敛","authors":"Masoumeh Ebrahimzadeh, Kazem Haghnejad Azar","doi":"10.1155/2024/9960246","DOIUrl":null,"url":null,"abstract":"We consider an ordered vector space <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>.</span> We define the net <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 33.301 12.5794\" width=\"33.301pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,11.713,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.527,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,25.67,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"36.8831838 -9.28833 10.171 12.5794\" width=\"10.171pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,36.933,0)\"><use xlink:href=\"#g113-89\"></use></g></svg></span> to be unbounded order convergent to <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> (denoted as <span><svg height=\"17.6182pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -14.3271 45.956 17.6182\" width=\"45.956pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.202,3.132)\"><use xlink:href=\"#g50-223\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,21.021,-8.782)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,25.853,-8.782)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.648,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,22.424,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,38.535,0)\"><use xlink:href=\"#g113-121\"></use></g></svg>).</span> This means that for every <span><svg height=\"12.0653pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 17.503 12.0653\" width=\"17.503pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.872,0)\"></path></g></svg><span></span><svg height=\"12.0653pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"21.085183800000003 -8.6359 18.025 12.0653\" width=\"18.025pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.135,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.296,0)\"></path></g></svg><span></span><span><svg height=\"12.0653pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"42.7421838 -8.6359 10.185 12.0653\" width=\"10.185pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,42.792,0)\"><use xlink:href=\"#g113-89\"></use></g></svg>,</span></span> there exists a net <svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 21.9833 14.8173\" width=\"21.9833pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.453,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.313,0)\"><use xlink:href=\"#g113-126\"></use></g></svg> (potentially over a different index set) such that <span><svg height=\"14.8695pt\" style=\"vertical-align:-5.52896pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.34054 22.986 14.8695\" width=\"22.986pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.942,3.132)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.434,0)\"></path></g></svg><span></span><span><svg height=\"14.8695pt\" style=\"vertical-align:-5.52896pt\" version=\"1.1\" viewbox=\"26.5681838 -9.34054 6.413 14.8695\" width=\"6.413pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,26.618,0)\"><use xlink:href=\"#g113-49\"></use></g></svg>,</span></span> and for every <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 7.68094 12.7178\" width=\"7.68094pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> there exists <svg height=\"9.25202pt\" style=\"vertical-align:-3.29111pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 12.1315 9.25202\" width=\"12.1315pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.059,3.132)\"></path></g></svg> such that <span><svg height=\"17.7871pt\" style=\"vertical-align:-5.5289pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 91.823 17.7871\" width=\"91.823pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.511,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.142,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.64,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,23.842,3.132)\"><use xlink:href=\"#g50-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.562,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.098,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,50.365,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,54.863,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,60.404,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,65.547,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,73.076,0)\"><use xlink:href=\"#g113-126\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,77.587,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,84.192,0)\"><use xlink:href=\"#g117-75\"></use></g></svg><span></span><svg height=\"17.7871pt\" style=\"vertical-align:-5.5289pt\" version=\"1.1\" viewbox=\"95.4051838 -12.2582 25.201 17.7871\" width=\"25.201pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,95.455,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,99.966,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,106.908,3.132)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.013,0,0,-0.013,112.768,0)\"><use xlink:href=\"#g113-126\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,117.279,-5.741)\"><use xlink:href=\"#g50-109\"></use></g></svg></span> whenever <span><svg height=\"11.0658pt\" style=\"vertical-align:-3.29112pt\" version=\"1.1\" viewbox=\"-0.0498162 -7.77468 18.648 11.0658\" width=\"18.648pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"></path></g></svg><span></span><span><svg height=\"11.0658pt\" style=\"vertical-align:-3.29112pt\" version=\"1.1\" viewbox=\"22.230183800000002 -7.77468 12.187 11.0658\" width=\"12.187pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.28,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,29.339,3.132)\"><use xlink:href=\"#g50-49\"></use></g></svg>.</span></span> The emergence of a broader convergence, stemming from the recognition of more ordered vector spaces compared to lattice vector spaces, has prompted an expansion and broadening of discussions surrounding lattices to encompass additional spaces. We delve into studying the properties of this convergence and explore its relationships with other established order convergence. In every ordered vector space, we demonstrate that under certain conditions, every <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.2267 6.1673\" width=\"13.2267pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"></path></g></svg>-</span>convergent net implies <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.2267 6.1673\" width=\"13.2267pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"><use xlink:href=\"#g113-112\"></use></g></svg>-</span>Cauchy, and vice versa. Let <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg> be an order dense subspace of the directed ordered vector space <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.6074 8.68572\" width=\"8.6074pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>.</span> If <span><svg height=\"10.5647pt\" style=\"vertical-align:-1.928801pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 17.142 10.5647\" width=\"17.142pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.511,0)\"><use xlink:href=\"#g117-75\"></use></g></svg><span></span><svg height=\"10.5647pt\" style=\"vertical-align:-1.928801pt\" version=\"1.1\" viewbox=\"20.724183800000002 -8.6359 8.655 10.5647\" width=\"8.655pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,20.774,0)\"><use xlink:href=\"#g113-90\"></use></g></svg></span> is a <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.2267 6.1673\" width=\"13.2267pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"><use xlink:href=\"#g113-112\"></use></g></svg>-</span>band in <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 8.6074 8.68572\" width=\"8.6074pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-90\"></use></g></svg>,</span> then we establish that <span><svg height=\"10.5647pt\" style=\"vertical-align:-1.928801pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.416 10.5647\" width=\"16.416pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-75\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.785,0)\"></path></g></svg><span></span><svg height=\"10.5647pt\" style=\"vertical-align:-1.928801pt\" version=\"1.1\" viewbox=\"19.271183800000003 -8.6359 10.13 10.5647\" width=\"10.13pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.321,0)\"><use xlink:href=\"#g113-89\"></use></g></svg></span> is a <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.2267 6.1673\" width=\"13.2267pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"><use xlink:href=\"#g113-112\"></use></g></svg>-</span>band in <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg>.</span>","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded Order Convergence in Ordered Vector Spaces\",\"authors\":\"Masoumeh Ebrahimzadeh, Kazem Haghnejad Azar\",\"doi\":\"10.1155/2024/9960246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an ordered vector space <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>.</span> We define the net <span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 33.301 12.5794\\\" width=\\\"33.301pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.713,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,17.527,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,25.67,0)\\\"></path></g></svg><span></span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"36.8831838 -9.28833 10.171 12.5794\\\" width=\\\"10.171pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,36.933,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg></span> to be unbounded order convergent to <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg> (denoted as <span><svg height=\\\"17.6182pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -14.3271 45.956 17.6182\\\" width=\\\"45.956pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.202,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,21.021,-8.782)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,25.853,-8.782)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,16.648,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,22.424,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,38.535,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg>).</span> This means that for every <span><svg height=\\\"12.0653pt\\\" style=\\\"vertical-align:-3.4294pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 17.503 12.0653\\\" width=\\\"17.503pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.872,0)\\\"></path></g></svg><span></span><svg height=\\\"12.0653pt\\\" style=\\\"vertical-align:-3.4294pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.085183800000003 -8.6359 18.025 12.0653\\\" width=\\\"18.025pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.135,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.296,0)\\\"></path></g></svg><span></span><span><svg height=\\\"12.0653pt\\\" style=\\\"vertical-align:-3.4294pt\\\" version=\\\"1.1\\\" viewbox=\\\"42.7421838 -8.6359 10.185 12.0653\\\" width=\\\"10.185pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,42.792,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg>,</span></span> there exists a net <svg height=\\\"14.8173pt\\\" style=\\\"vertical-align:-5.52897pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 21.9833 14.8173\\\" width=\\\"21.9833pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.453,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,17.313,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g></svg> (potentially over a different index set) such that <span><svg height=\\\"14.8695pt\\\" style=\\\"vertical-align:-5.52896pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.34054 22.986 14.8695\\\" width=\\\"22.986pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.942,3.132)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.434,0)\\\"></path></g></svg><span></span><span><svg height=\\\"14.8695pt\\\" style=\\\"vertical-align:-5.52896pt\\\" version=\\\"1.1\\\" viewbox=\\\"26.5681838 -9.34054 6.413 14.8695\\\" width=\\\"6.413pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,26.618,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g></svg>,</span></span> and for every <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 7.68094 12.7178\\\" width=\\\"7.68094pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> there exists <svg height=\\\"9.25202pt\\\" style=\\\"vertical-align:-3.29111pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 12.1315 9.25202\\\" width=\\\"12.1315pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.059,3.132)\\\"></path></g></svg> such that <span><svg height=\\\"17.7871pt\\\" style=\\\"vertical-align:-5.5289pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 91.823 17.7871\\\" width=\\\"91.823pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.511,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.142,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,16.64,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,23.842,3.132)\\\"><use xlink:href=\\\"#g50-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.562,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,43.098,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,50.365,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,54.863,-5.741)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,60.404,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,65.547,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,73.076,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,77.587,-5.741)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,84.192,0)\\\"><use xlink:href=\\\"#g117-75\\\"></use></g></svg><span></span><svg height=\\\"17.7871pt\\\" style=\\\"vertical-align:-5.5289pt\\\" version=\\\"1.1\\\" viewbox=\\\"95.4051838 -12.2582 25.201 17.7871\\\" width=\\\"25.201pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,95.455,0)\\\"><use xlink:href=\\\"#g113-124\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,99.966,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,106.908,3.132)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,112.768,0)\\\"><use xlink:href=\\\"#g113-126\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,117.279,-5.741)\\\"><use xlink:href=\\\"#g50-109\\\"></use></g></svg></span> whenever <span><svg height=\\\"11.0658pt\\\" style=\\\"vertical-align:-3.29112pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -7.77468 18.648 11.0658\\\" width=\\\"18.648pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.017,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.0658pt\\\" style=\\\"vertical-align:-3.29112pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.230183800000002 -7.77468 12.187 11.0658\\\" width=\\\"12.187pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.28,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,29.339,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g></svg>.</span></span> The emergence of a broader convergence, stemming from the recognition of more ordered vector spaces compared to lattice vector spaces, has prompted an expansion and broadening of discussions surrounding lattices to encompass additional spaces. We delve into studying the properties of this convergence and explore its relationships with other established order convergence. In every ordered vector space, we demonstrate that under certain conditions, every <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.2267 6.1673\\\" width=\\\"13.2267pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"></path></g></svg>-</span>convergent net implies <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.2267 6.1673\\\" width=\\\"13.2267pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"><use xlink:href=\\\"#g113-112\\\"></use></g></svg>-</span>Cauchy, and vice versa. Let <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg> be an order dense subspace of the directed ordered vector space <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.6074 8.68572\\\" width=\\\"8.6074pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>.</span> If <span><svg height=\\\"10.5647pt\\\" style=\\\"vertical-align:-1.928801pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 17.142 10.5647\\\" width=\\\"17.142pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.511,0)\\\"><use xlink:href=\\\"#g117-75\\\"></use></g></svg><span></span><svg height=\\\"10.5647pt\\\" style=\\\"vertical-align:-1.928801pt\\\" version=\\\"1.1\\\" viewbox=\\\"20.724183800000002 -8.6359 8.655 10.5647\\\" width=\\\"8.655pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,20.774,0)\\\"><use xlink:href=\\\"#g113-90\\\"></use></g></svg></span> is a <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.2267 6.1673\\\" width=\\\"13.2267pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"><use xlink:href=\\\"#g113-112\\\"></use></g></svg>-</span>band in <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 8.6074 8.68572\\\" width=\\\"8.6074pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-90\\\"></use></g></svg>,</span> then we establish that <span><svg height=\\\"10.5647pt\\\" style=\\\"vertical-align:-1.928801pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 16.416 10.5647\\\" width=\\\"16.416pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-75\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,8.785,0)\\\"></path></g></svg><span></span><svg height=\\\"10.5647pt\\\" style=\\\"vertical-align:-1.928801pt\\\" version=\\\"1.1\\\" viewbox=\\\"19.271183800000003 -8.6359 10.13 10.5647\\\" width=\\\"10.13pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,19.321,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg></span> is a <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.2267 6.1673\\\" width=\\\"13.2267pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"><use xlink:href=\\\"#g113-112\\\"></use></g></svg>-</span>band in <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg>.</span>\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9960246\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9960246","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个有序向量空间 。我们将网定义为无界有序收敛于(表示为 )。这意味着,对于每一个 ,都存在一个网(可能在不同的索引集上),使得 ,并且对于每一个 ,都存在这样一个网,使得 。与网格向量空间相比,人们认识到更多有序向量空间,因此出现了更广泛的收敛性,这促使围绕网格的讨论不断扩展和拓宽,以涵盖更多空间。我们深入研究了这种收敛的特性,并探讨了它与其他既定有序收敛的关系。我们证明,在每个有序向量空间中,在某些条件下,每个-收敛网都意味着-考奇,反之亦然。设 是有向有序向量空间的阶密子空间。如果 是 ,那么我们证明 是 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded Order Convergence in Ordered Vector Spaces
We consider an ordered vector space . We define the net to be unbounded order convergent to (denoted as ). This means that for every , there exists a net (potentially over a different index set) such that , and for every , there exists such that whenever . The emergence of a broader convergence, stemming from the recognition of more ordered vector spaces compared to lattice vector spaces, has prompted an expansion and broadening of discussions surrounding lattices to encompass additional spaces. We delve into studying the properties of this convergence and explore its relationships with other established order convergence. In every ordered vector space, we demonstrate that under certain conditions, every -convergent net implies -Cauchy, and vice versa. Let be an order dense subspace of the directed ordered vector space . If is a -band in , then we establish that is a -band in .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信