整体空间上抛物椭圆凯勒-西格尔系统的周期解

Pub Date : 2024-04-26 DOI:10.1002/mana.202300311
Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan
{"title":"整体空间上抛物椭圆凯勒-西格尔系统的周期解","authors":"Nguyen Thi Loan,&nbsp;Van Anh Nguyen Thi,&nbsp;Tran Van Thuy,&nbsp;Pham Truong Xuan","doi":"10.1002/mana.202300311","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {R}^n\\,\\,(\\hbox{ where }n \\geqslant 4)$</annotation>\n </semantics></math> and real hyperbolic space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {H}^n\\,\\, (\\hbox{where }n \\geqslant 2)$</annotation>\n </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>2</mn>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{n}{2},\\infty }(\\mathbb {R}^n)$</annotation>\n </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mfrac>\n <mi>p</mi>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{p}{2}}(\\mathbb {H}^n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&lt;</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$n&amp;lt;p&amp;lt;2n$</annotation>\n </semantics></math> to obtain those on <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and the one in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces\",\"authors\":\"Nguyen Thi Loan,&nbsp;Van Anh Nguyen Thi,&nbsp;Tran Van Thuy,&nbsp;Pham Truong Xuan\",\"doi\":\"10.1002/mana.202300311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mspace></mspace>\\n <mtext>where</mtext>\\n <mspace></mspace>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^n\\\\,\\\\,(\\\\hbox{ where }n \\\\geqslant 4)$</annotation>\\n </semantics></math> and real hyperbolic space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mtext>where</mtext>\\n <mspace></mspace>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^n\\\\,\\\\, (\\\\hbox{where }n \\\\geqslant 2)$</annotation>\\n </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mrow>\\n <mfrac>\\n <mi>n</mi>\\n <mn>2</mn>\\n </mfrac>\\n <mo>,</mo>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^{\\\\frac{n}{2},\\\\infty }(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> and on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mfrac>\\n <mi>p</mi>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^{\\\\frac{p}{2}}(\\\\mathbb {H}^n)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>&lt;</mo>\\n <mi>p</mi>\\n <mo>&lt;</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$n&amp;lt;p&amp;lt;2n$</annotation>\\n </semantics></math> to obtain those on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> and the one in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了由欧几里得空间和实双曲空间细化的整体空间上抛物线-椭圆 Keller-Segel 系统周期解的存在性和唯一性。我们在弱洛伦兹空间等临界空间的框架内工作,以获得 Keller-Segel 系统在......和......上的结果。我们的方法基于热半群的分散和平滑估计以及定点论证。这项工作还提供了凯勒-西格尔系统的周期性温和解的渐近行为与 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces

In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space R n ( where n 4 ) $\mathbb {R}^n\,\,(\hbox{ where }n \geqslant 4)$ and real hyperbolic space H n ( where n 2 ) $\mathbb {H}^n\,\, (\hbox{where }n \geqslant 2)$ . We work in framework of critical spaces such as on weak-Lorentz space L n 2 , ( R n ) $L^{\frac{n}{2},\infty }(\mathbb {R}^n)$ to obtain the results for the Keller–Segel system on R n $\mathbb {R}^n$ and on L p 2 ( H n ) $L^{\frac{p}{2}}(\mathbb {H}^n)$ for n < p < 2 n $n&lt;p&lt;2n$ to obtain those on H n $\mathbb {H}^n$ . Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in R n $\mathbb {R}^n$ and the one in  H n $\mathbb {H}^n$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信