Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan
{"title":"整体空间上抛物椭圆凯勒-西格尔系统的周期解","authors":"Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan","doi":"10.1002/mana.202300311","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mspace></mspace>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {R}^n\\,\\,(\\hbox{ where }n \\geqslant 4)$</annotation>\n </semantics></math> and real hyperbolic space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mtext>where</mtext>\n <mspace></mspace>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {H}^n\\,\\, (\\hbox{where }n \\geqslant 2)$</annotation>\n </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>2</mn>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{n}{2},\\infty }(\\mathbb {R}^n)$</annotation>\n </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mfrac>\n <mi>p</mi>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\frac{p}{2}}(\\mathbb {H}^n)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$n&lt;p&lt;2n$</annotation>\n </semantics></math> to obtain those on <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> and the one in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces\",\"authors\":\"Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan\",\"doi\":\"10.1002/mana.202300311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mspace></mspace>\\n <mtext>where</mtext>\\n <mspace></mspace>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^n\\\\,\\\\,(\\\\hbox{ where }n \\\\geqslant 4)$</annotation>\\n </semantics></math> and real hyperbolic space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mtext>where</mtext>\\n <mspace></mspace>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^n\\\\,\\\\, (\\\\hbox{where }n \\\\geqslant 2)$</annotation>\\n </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mrow>\\n <mfrac>\\n <mi>n</mi>\\n <mn>2</mn>\\n </mfrac>\\n <mo>,</mo>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^{\\\\frac{n}{2},\\\\infty }(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> and on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mfrac>\\n <mi>p</mi>\\n <mn>2</mn>\\n </mfrac>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^{\\\\frac{p}{2}}(\\\\mathbb {H}^n)$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo><</mo>\\n <mi>p</mi>\\n <mo><</mo>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$n&lt;p&lt;2n$</annotation>\\n </semantics></math> to obtain those on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> and the one in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces
In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space and real hyperbolic space . We work in framework of critical spaces such as on weak-Lorentz space to obtain the results for the Keller–Segel system on and on for to obtain those on . Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments. This work provides also a fully comparison between the asymptotic behaviors of periodic mild solutions of the Keller–Segel system obtained in and the one in .