Xiaokun Wang, Yanrui Xu, Sinuo Liu, Bo Ren, Jiří Kosinka, Alexandru C. Telea, Jiamin Wang, Chongming Song, Jian Chang, Chenfeng Li, Jian Jun Zhang, Xiaojuan Ban
{"title":"计算机制图中基于物理的流体模拟:调查、研究趋势和挑战","authors":"Xiaokun Wang, Yanrui Xu, Sinuo Liu, Bo Ren, Jiří Kosinka, Alexandru C. Telea, Jiamin Wang, Chongming Song, Jian Chang, Chenfeng Li, Jian Jun Zhang, Xiaojuan Ban","doi":"10.1007/s41095-023-0368-y","DOIUrl":null,"url":null,"abstract":"<p>Physics-based fluid simulation has played an increasingly important role in the computer graphics community. Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency. Novel techniques have emerged to deal with complex boundaries, multiphase fluids, gas–liquid interfaces, and fine details. The parallel use of machine learning, image processing, and fluid control technologies has brought many interesting and novel research perspectives. In this survey, we provide an introduction to theoretical concepts underpinning physics-based fluid simulation and their practical implementation, with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fluid simulation, with a focus on developments in the last decade. Driven by the distribution of recent publications in the field, we structure our survey to cover physical background; discretization approaches; computational methods that address scalability; fluid interactions with other materials and interfaces; and methods for expressive aspects of surface detail and control. From a practical perspective, we give an overview of existing implementations available for the above methods.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"11 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based fluid simulation in computer graphics: Survey, research trends, and challenges\",\"authors\":\"Xiaokun Wang, Yanrui Xu, Sinuo Liu, Bo Ren, Jiří Kosinka, Alexandru C. Telea, Jiamin Wang, Chongming Song, Jian Chang, Chenfeng Li, Jian Jun Zhang, Xiaojuan Ban\",\"doi\":\"10.1007/s41095-023-0368-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Physics-based fluid simulation has played an increasingly important role in the computer graphics community. Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency. Novel techniques have emerged to deal with complex boundaries, multiphase fluids, gas–liquid interfaces, and fine details. The parallel use of machine learning, image processing, and fluid control technologies has brought many interesting and novel research perspectives. In this survey, we provide an introduction to theoretical concepts underpinning physics-based fluid simulation and their practical implementation, with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fluid simulation, with a focus on developments in the last decade. Driven by the distribution of recent publications in the field, we structure our survey to cover physical background; discretization approaches; computational methods that address scalability; fluid interactions with other materials and interfaces; and methods for expressive aspects of surface detail and control. From a practical perspective, we give an overview of existing implementations available for the above methods.\\n</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-023-0368-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-023-0368-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Physics-based fluid simulation in computer graphics: Survey, research trends, and challenges
Physics-based fluid simulation has played an increasingly important role in the computer graphics community. Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency. Novel techniques have emerged to deal with complex boundaries, multiphase fluids, gas–liquid interfaces, and fine details. The parallel use of machine learning, image processing, and fluid control technologies has brought many interesting and novel research perspectives. In this survey, we provide an introduction to theoretical concepts underpinning physics-based fluid simulation and their practical implementation, with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fluid simulation, with a focus on developments in the last decade. Driven by the distribution of recent publications in the field, we structure our survey to cover physical background; discretization approaches; computational methods that address scalability; fluid interactions with other materials and interfaces; and methods for expressive aspects of surface detail and control. From a practical perspective, we give an overview of existing implementations available for the above methods.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.