{"title":"从拟南芥叶片中分离出的细胞外囊泡揭示了哺乳动物外泌体的特征","authors":"Sharjeel Jokhio, Ian Peng, Ching-An Peng","doi":"10.1007/s00709-024-01954-x","DOIUrl":null,"url":null,"abstract":"<p>Plant-derived extracellular vesicles (EVs), containing a myriad of bioactive proteins, microRNAs, lipids, and secondary metabolites, have recently become the focus of rising interest due to their important roles in various applications. The widely accepted method for isolating plant EVs is differential ultracentrifugation plus density gradient centrifugation. However, the combination of differential ultracentrifugation and density gradient centrifugation for the isolation of plant EVs is time-consuming and labor-intensive. Hence, there is a need for more efficient methods to perform the separation of plant EVs. In this study, EVs were separated from <i>Arabidopsis thaliana</i> leaves by a cost-effective polyethylene glycol (PEG)-based precipitation approach. The mean size of purified <i>Arabidopsis thaliana</i> EVs determined by dynamic light scattering was 266 nm, which is consistent with nanoparticle tracking analysis. The size was also confirmed via transmission electron microscopy with morphology of a cup-shaped appearance which is the typical mammalian exosome’s morphology. Additionally, Western blotting of the purified <i>Arabidopsis thaliana</i> EVs, using commercially available mammalian exosomal kits, displayed surface marker tetraspanin proteins (CD9, CD63, and CD81), and endosomal sorting complexes required for transport (ESCRT)-associated proteins (TSG101 and ALIX). This demonstrates that the purified <i>Arabidopsis thaliana</i> EVs reveal the typical proteins reported in mammalian exosomes.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular vesicles isolated from Arabidopsis thaliana leaves reveal characteristics of mammalian exosomes\",\"authors\":\"Sharjeel Jokhio, Ian Peng, Ching-An Peng\",\"doi\":\"10.1007/s00709-024-01954-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant-derived extracellular vesicles (EVs), containing a myriad of bioactive proteins, microRNAs, lipids, and secondary metabolites, have recently become the focus of rising interest due to their important roles in various applications. The widely accepted method for isolating plant EVs is differential ultracentrifugation plus density gradient centrifugation. However, the combination of differential ultracentrifugation and density gradient centrifugation for the isolation of plant EVs is time-consuming and labor-intensive. Hence, there is a need for more efficient methods to perform the separation of plant EVs. In this study, EVs were separated from <i>Arabidopsis thaliana</i> leaves by a cost-effective polyethylene glycol (PEG)-based precipitation approach. The mean size of purified <i>Arabidopsis thaliana</i> EVs determined by dynamic light scattering was 266 nm, which is consistent with nanoparticle tracking analysis. The size was also confirmed via transmission electron microscopy with morphology of a cup-shaped appearance which is the typical mammalian exosome’s morphology. Additionally, Western blotting of the purified <i>Arabidopsis thaliana</i> EVs, using commercially available mammalian exosomal kits, displayed surface marker tetraspanin proteins (CD9, CD63, and CD81), and endosomal sorting complexes required for transport (ESCRT)-associated proteins (TSG101 and ALIX). This demonstrates that the purified <i>Arabidopsis thaliana</i> EVs reveal the typical proteins reported in mammalian exosomes.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01954-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01954-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Extracellular vesicles isolated from Arabidopsis thaliana leaves reveal characteristics of mammalian exosomes
Plant-derived extracellular vesicles (EVs), containing a myriad of bioactive proteins, microRNAs, lipids, and secondary metabolites, have recently become the focus of rising interest due to their important roles in various applications. The widely accepted method for isolating plant EVs is differential ultracentrifugation plus density gradient centrifugation. However, the combination of differential ultracentrifugation and density gradient centrifugation for the isolation of plant EVs is time-consuming and labor-intensive. Hence, there is a need for more efficient methods to perform the separation of plant EVs. In this study, EVs were separated from Arabidopsis thaliana leaves by a cost-effective polyethylene glycol (PEG)-based precipitation approach. The mean size of purified Arabidopsis thaliana EVs determined by dynamic light scattering was 266 nm, which is consistent with nanoparticle tracking analysis. The size was also confirmed via transmission electron microscopy with morphology of a cup-shaped appearance which is the typical mammalian exosome’s morphology. Additionally, Western blotting of the purified Arabidopsis thaliana EVs, using commercially available mammalian exosomal kits, displayed surface marker tetraspanin proteins (CD9, CD63, and CD81), and endosomal sorting complexes required for transport (ESCRT)-associated proteins (TSG101 and ALIX). This demonstrates that the purified Arabidopsis thaliana EVs reveal the typical proteins reported in mammalian exosomes.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".