电磁波导的稳定性分析。第 2 部分:非均质波导

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Leszek Demkowicz, Jens M. Melenk, Jacob Badger, Stefan Henneking
{"title":"电磁波导的稳定性分析。第 2 部分:非均质波导","authors":"Leszek Demkowicz,&nbsp;Jens M. Melenk,&nbsp;Jacob Badger,&nbsp;Stefan Henneking","doi":"10.1007/s10444-024-10130-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a continuation of Melenk et al., “Stability analysis for electromagnetic waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides” (2023) [5], extending the stability results for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case. The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveguide problem is well-posed with the stability constant scaling linearly with waveguide length <i>L</i>. The results provide a basis for proving convergence of a Discontinuous Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultraweak variational formulation for the resulting modified system of Maxwell equations, see Part 1.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis for electromagnetic waveguides. Part 2: non-homogeneous waveguides\",\"authors\":\"Leszek Demkowicz,&nbsp;Jens M. Melenk,&nbsp;Jacob Badger,&nbsp;Stefan Henneking\",\"doi\":\"10.1007/s10444-024-10130-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a continuation of Melenk et al., “Stability analysis for electromagnetic waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides” (2023) [5], extending the stability results for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case. The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveguide problem is well-posed with the stability constant scaling linearly with waveguide length <i>L</i>. The results provide a basis for proving convergence of a Discontinuous Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultraweak variational formulation for the resulting modified system of Maxwell equations, see Part 1.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10130-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10130-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文是 Melenk 等人 "电磁波导稳定性分析"(2023 年)[5] 的延续。第一部分:声波和同质电磁波导"(2023 年)[5],将同质电磁波导的稳定性结果扩展到非同质情况。分析采用了自联合算子特征问题的扰动技术。我们证明,非均质电磁波导问题的稳定性常数与波导长度 L 成线性缩放关系。这些结果为证明基于全包络解析的非连续彼得洛夫-加勒金(DPG)离散化的收敛性,以及由此产生的修正麦克斯韦方程组的超弱变分公式提供了基础,见第 1 部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis for electromagnetic waveguides. Part 2: non-homogeneous waveguides

This paper is a continuation of Melenk et al., “Stability analysis for electromagnetic waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides” (2023) [5], extending the stability results for homogeneous electromagnetic (EM) waveguides to the non-homogeneous case. The analysis is done using perturbation techniques for self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveguide problem is well-posed with the stability constant scaling linearly with waveguide length L. The results provide a basis for proving convergence of a Discontinuous Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultraweak variational formulation for the resulting modified system of Maxwell equations, see Part 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信