Krull 单实体的黎曼 zeta 函数

IF 0.6 3区 数学 Q3 MATHEMATICS
Felix Gotti , Ulrich Krause
{"title":"Krull 单实体的黎曼 zeta 函数","authors":"Felix Gotti ,&nbsp;Ulrich Krause","doi":"10.1016/j.jnt.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>The primary purpose of this paper is to generalize the classical Riemann zeta function to the setting of Krull monoids with torsion class groups. We provide a first study of the same generalization by extending Euler's classical product formula to the more general scenario of Krull monoids with torsion class groups. In doing so, the Decay Theorem is fundamental as it allows us to use strong atoms instead of primes to obtain a weaker version of the Fundamental Theorem of Arithmetic in the more general setting of Krull monoids with torsion class groups. Several related examples are exhibited throughout the paper, in particular, algebraic number fields for which the generalized Riemann zeta function specializes to the Dedekind zeta function.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 134-160"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemann zeta functions for Krull monoids\",\"authors\":\"Felix Gotti ,&nbsp;Ulrich Krause\",\"doi\":\"10.1016/j.jnt.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primary purpose of this paper is to generalize the classical Riemann zeta function to the setting of Krull monoids with torsion class groups. We provide a first study of the same generalization by extending Euler's classical product formula to the more general scenario of Krull monoids with torsion class groups. In doing so, the Decay Theorem is fundamental as it allows us to use strong atoms instead of primes to obtain a weaker version of the Fundamental Theorem of Arithmetic in the more general setting of Krull monoids with torsion class groups. Several related examples are exhibited throughout the paper, in particular, algebraic number fields for which the generalized Riemann zeta function specializes to the Dedekind zeta function.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"262 \",\"pages\":\"Pages 134-160\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24000817\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是将经典的黎曼zeta函数推广到具有扭转类群的Krull单实体中。我们通过将欧拉的经典积公式扩展到具有扭转类群的 Krull 单实体这一更一般的情形,首次研究了同样的泛化。在此过程中,衰减定理具有根本性的意义,因为它允许我们使用强原子而不是素数,从而在具有扭转类群的 Krull 单元的更一般情形中获得算术基本定理的弱化版本。论文中还展示了几个相关的例子,特别是代数数域的广义黎曼zeta函数特化为戴德金zeta函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemann zeta functions for Krull monoids

The primary purpose of this paper is to generalize the classical Riemann zeta function to the setting of Krull monoids with torsion class groups. We provide a first study of the same generalization by extending Euler's classical product formula to the more general scenario of Krull monoids with torsion class groups. In doing so, the Decay Theorem is fundamental as it allows us to use strong atoms instead of primes to obtain a weaker version of the Fundamental Theorem of Arithmetic in the more general setting of Krull monoids with torsion class groups. Several related examples are exhibited throughout the paper, in particular, algebraic number fields for which the generalized Riemann zeta function specializes to the Dedekind zeta function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信