{"title":"绿色催化剂创新:使用支撑在热解花生壳和经改性生物秸秆上的钾促进钴催化剂强化费托合成","authors":"Fatemeh Bayat , S.M. Pirbazari , Nastaran Shojaei , Shiva Kiani , Ahmad Tavasoli","doi":"10.1016/j.fuproc.2024.108094","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores pyrolysis potential for effective modified biochar (MB) production, serving as a green and novel carbon-based catalyst support in Fischer-Tropsch to olefins synthesis. For this purpose, the MB produced from the pyrolysis of pre-treated Peanut shell (PS) and <em>Cladophora glomerata</em> algae (CG) was used as a high porosity support for cobalt catalyst synthesis. The impregnation technique was applied to prepare the cobalt catalysts, and the catalysts were promoted with potassium. Various methods examine catalysts physico-chemical properties. After 10 h of reduction at 400 °C, the catalysts' activity and selectivity were studied in a fixed-bed reactor. TEM images show that the metal particles are suitably distributed on the porous surface of the modified biochars. The majority of the particles were between 5 and 15 nm in size. Also, TPR results indicate a suitable metal dispersion of about 10% and good catalyst reducibility have been achieved. The cobalt catalysts produced on MBs of CG and PS exhibited FT rates of 0.245 and 0.223 (g HC/g cat.h), with CO conversion rates of 50.25% and 45.68% in each case. Finally, K-promoted cobalt catalysts supported on MBs of CG and PS showed the α-olefins selectivities of 38.67% and 35.49% for C2-C13 hydrocarbons, respectively.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"258 ","pages":"Article 108094"},"PeriodicalIF":7.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838202400064X/pdfft?md5=cc2d8473c9367e66eaed8cf09e5f78e5&pid=1-s2.0-S037838202400064X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Green catalyst innovation: Enhanced Fischer-Tropsch synthesis using potassium-promoted cobalt catalysts supported on pyrolyzed peanut shells and Cladophora Glomerata modified biochars\",\"authors\":\"Fatemeh Bayat , S.M. Pirbazari , Nastaran Shojaei , Shiva Kiani , Ahmad Tavasoli\",\"doi\":\"10.1016/j.fuproc.2024.108094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores pyrolysis potential for effective modified biochar (MB) production, serving as a green and novel carbon-based catalyst support in Fischer-Tropsch to olefins synthesis. For this purpose, the MB produced from the pyrolysis of pre-treated Peanut shell (PS) and <em>Cladophora glomerata</em> algae (CG) was used as a high porosity support for cobalt catalyst synthesis. The impregnation technique was applied to prepare the cobalt catalysts, and the catalysts were promoted with potassium. Various methods examine catalysts physico-chemical properties. After 10 h of reduction at 400 °C, the catalysts' activity and selectivity were studied in a fixed-bed reactor. TEM images show that the metal particles are suitably distributed on the porous surface of the modified biochars. The majority of the particles were between 5 and 15 nm in size. Also, TPR results indicate a suitable metal dispersion of about 10% and good catalyst reducibility have been achieved. The cobalt catalysts produced on MBs of CG and PS exhibited FT rates of 0.245 and 0.223 (g HC/g cat.h), with CO conversion rates of 50.25% and 45.68% in each case. Finally, K-promoted cobalt catalysts supported on MBs of CG and PS showed the α-olefins selectivities of 38.67% and 35.49% for C2-C13 hydrocarbons, respectively.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"258 \",\"pages\":\"Article 108094\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037838202400064X/pdfft?md5=cc2d8473c9367e66eaed8cf09e5f78e5&pid=1-s2.0-S037838202400064X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838202400064X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202400064X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green catalyst innovation: Enhanced Fischer-Tropsch synthesis using potassium-promoted cobalt catalysts supported on pyrolyzed peanut shells and Cladophora Glomerata modified biochars
This paper explores pyrolysis potential for effective modified biochar (MB) production, serving as a green and novel carbon-based catalyst support in Fischer-Tropsch to olefins synthesis. For this purpose, the MB produced from the pyrolysis of pre-treated Peanut shell (PS) and Cladophora glomerata algae (CG) was used as a high porosity support for cobalt catalyst synthesis. The impregnation technique was applied to prepare the cobalt catalysts, and the catalysts were promoted with potassium. Various methods examine catalysts physico-chemical properties. After 10 h of reduction at 400 °C, the catalysts' activity and selectivity were studied in a fixed-bed reactor. TEM images show that the metal particles are suitably distributed on the porous surface of the modified biochars. The majority of the particles were between 5 and 15 nm in size. Also, TPR results indicate a suitable metal dispersion of about 10% and good catalyst reducibility have been achieved. The cobalt catalysts produced on MBs of CG and PS exhibited FT rates of 0.245 and 0.223 (g HC/g cat.h), with CO conversion rates of 50.25% and 45.68% in each case. Finally, K-promoted cobalt catalysts supported on MBs of CG and PS showed the α-olefins selectivities of 38.67% and 35.49% for C2-C13 hydrocarbons, respectively.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.