3-Uniform 超图中的大型 Y3,2 层

IF 1 3区 数学 Q1 MATHEMATICS
Jie Han , Lin Sun , Guanghui Wang
{"title":"3-Uniform 超图中的大型 Y3,2 层","authors":"Jie Han ,&nbsp;Lin Sun ,&nbsp;Guanghui Wang","doi":"10.1016/j.ejc.2024.103976","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span> be the 3-graph with two edges intersecting in two vertices. We prove that every 3-graph <span><math><mi>H</mi></math></span> on <span><math><mi>n</mi></math></span> vertices with at least <span><math><mrow><mo>max</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>4</mn><mi>α</mi><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced><mo>,</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced><mo>−</mo><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>α</mi><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> edges contains a <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span>-tiling covering more than <span><math><mrow><mn>4</mn><mi>α</mi><mi>n</mi></mrow></math></span> vertices, for sufficiently large <span><math><mi>n</mi></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></math></span>. The bound on the number of edges is asymptotically best possible and solves a conjecture of the authors for 3-graphs that generalizes the Matching Conjecture of Erdős.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Y3,2-tilings in 3-uniform hypergraphs\",\"authors\":\"Jie Han ,&nbsp;Lin Sun ,&nbsp;Guanghui Wang\",\"doi\":\"10.1016/j.ejc.2024.103976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span> be the 3-graph with two edges intersecting in two vertices. We prove that every 3-graph <span><math><mi>H</mi></math></span> on <span><math><mi>n</mi></math></span> vertices with at least <span><math><mrow><mo>max</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>4</mn><mi>α</mi><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced><mo>,</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced><mo>−</mo><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>α</mi><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> edges contains a <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span>-tiling covering more than <span><math><mrow><mn>4</mn><mi>α</mi><mi>n</mi></mrow></math></span> vertices, for sufficiently large <span><math><mi>n</mi></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></math></span>. The bound on the number of edges is asymptotically best possible and solves a conjecture of the authors for 3-graphs that generalizes the Matching Conjecture of Erdős.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000611\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000611","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Y3,2 是有两条边相交于两个顶点的 3 图。我们证明,对于足够大的 n 和 0<α<1/4,n 个顶点上至少有 max4αn3,n3-n-αn3+o(n3) 条边的每个 3 图 H 都包含一个覆盖超过 4αn 个顶点的 Y3,2 拼图。关于边数的约束是渐近最佳的,并且解决了作者对 3 图的一个猜想,这个猜想概括了厄多斯的匹配猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Y3,2-tilings in 3-uniform hypergraphs

Let Y3,2 be the 3-graph with two edges intersecting in two vertices. We prove that every 3-graph H on n vertices with at least max4αn3,n3nαn3+o(n3) edges contains a Y3,2-tiling covering more than 4αn vertices, for sufficiently large n and 0<α<1/4. The bound on the number of edges is asymptotically best possible and solves a conjecture of the authors for 3-graphs that generalizes the Matching Conjecture of Erdős.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信