{"title":"壳状原子气体","authors":"Andrea Tononi , Luca Salasnich","doi":"10.1016/j.physrep.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>We review the quantum statistical properties of two-dimensional shell-shaped gases, produced by cooling and confining atomic ensembles in thin hollow shells. We consider both spherical and ellipsoidal shapes, discussing at zero and at finite temperature the phenomena of Bose–Einstein condensation and of superfluidity, the physics of vortices, and the crossover from the Bardeen–Cooper–Schrieffer regime to a Bose–Einstein condensate. The novel aspects associated to the curved geometry are elucidated in comparison with flat two-dimensional superfluids. We also describe the hydrodynamic excitations and their relation with the Berezinskii–Kosterlitz–Thouless transition for two-dimensional flat and curved superfluids. In the next years, shell-shaped atomic gases will be the leading experimental platform for investigations of quantum many-body physics in curved spatial domains.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1072 ","pages":"Pages 1-48"},"PeriodicalIF":23.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shell-shaped atomic gases\",\"authors\":\"Andrea Tononi , Luca Salasnich\",\"doi\":\"10.1016/j.physrep.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review the quantum statistical properties of two-dimensional shell-shaped gases, produced by cooling and confining atomic ensembles in thin hollow shells. We consider both spherical and ellipsoidal shapes, discussing at zero and at finite temperature the phenomena of Bose–Einstein condensation and of superfluidity, the physics of vortices, and the crossover from the Bardeen–Cooper–Schrieffer regime to a Bose–Einstein condensate. The novel aspects associated to the curved geometry are elucidated in comparison with flat two-dimensional superfluids. We also describe the hydrodynamic excitations and their relation with the Berezinskii–Kosterlitz–Thouless transition for two-dimensional flat and curved superfluids. In the next years, shell-shaped atomic gases will be the leading experimental platform for investigations of quantum many-body physics in curved spatial domains.</p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1072 \",\"pages\":\"Pages 1-48\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157324001376\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324001376","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We review the quantum statistical properties of two-dimensional shell-shaped gases, produced by cooling and confining atomic ensembles in thin hollow shells. We consider both spherical and ellipsoidal shapes, discussing at zero and at finite temperature the phenomena of Bose–Einstein condensation and of superfluidity, the physics of vortices, and the crossover from the Bardeen–Cooper–Schrieffer regime to a Bose–Einstein condensate. The novel aspects associated to the curved geometry are elucidated in comparison with flat two-dimensional superfluids. We also describe the hydrodynamic excitations and their relation with the Berezinskii–Kosterlitz–Thouless transition for two-dimensional flat and curved superfluids. In the next years, shell-shaped atomic gases will be the leading experimental platform for investigations of quantum many-body physics in curved spatial domains.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.