带电球形水滴的动态表面张力

IF 0.9 Q3 Engineering
A. I. Grigor’ev, N. Yu. Kolbneva, S. O. Shiryaeva
{"title":"带电球形水滴的动态表面张力","authors":"A. I. Grigor’ev,&nbsp;N. Yu. Kolbneva,&nbsp;S. O. Shiryaeva","doi":"10.3103/S1068375524020054","DOIUrl":null,"url":null,"abstract":"<p>In asymptotic calculations of the first order of smallness in the dimensionless amplitude of water droplet oscillations, the effect of the dynamic surface tension on the oscillation parameters was investigated using a model of an ideal incompressible liquid. It was shown that the effect of the dynamic surface tension strongly manifests itself at frequencies of external influences that are inversely proportional to the water relaxation time. At such frequencies, under the action of external influences, the electrical double layer is destroyed (the ordering of water molecules in the near-surface layer is disrupted). As a result, the free energy of the surface increases, and so does the liquid surface tension. The dynamic surface tension affects the acoustic radiation from the droplet by altering the coefficient of surface tension. The contribution to the electromagnetic radiation of the oscillating droplet is made by the disruption of the order of near-surface water molecules in the electrical double layer.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"211 - 218"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Surface Tension of a Charged Spherical Water Droplet\",\"authors\":\"A. I. Grigor’ev,&nbsp;N. Yu. Kolbneva,&nbsp;S. O. Shiryaeva\",\"doi\":\"10.3103/S1068375524020054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In asymptotic calculations of the first order of smallness in the dimensionless amplitude of water droplet oscillations, the effect of the dynamic surface tension on the oscillation parameters was investigated using a model of an ideal incompressible liquid. It was shown that the effect of the dynamic surface tension strongly manifests itself at frequencies of external influences that are inversely proportional to the water relaxation time. At such frequencies, under the action of external influences, the electrical double layer is destroyed (the ordering of water molecules in the near-surface layer is disrupted). As a result, the free energy of the surface increases, and so does the liquid surface tension. The dynamic surface tension affects the acoustic radiation from the droplet by altering the coefficient of surface tension. The contribution to the electromagnetic radiation of the oscillating droplet is made by the disruption of the order of near-surface water molecules in the electrical double layer.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 2\",\"pages\":\"211 - 218\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524020054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524020054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在对水滴振荡无量纲振幅的一阶小值进行渐近计算时,使用理想不可压缩液体模型研究了动态表面张力对振荡参数的影响。结果表明,动态表面张力的影响在外部影响频率与水的弛豫时间成反比时表现得非常明显。在这种频率下,在外部影响的作用下,电双层被破坏(近表面层中水分子的有序性被打乱)。因此,表面自由能增加,液体表面张力也随之增加。动态表面张力通过改变表面张力系数来影响液滴的声辐射。振荡液滴的电磁辐射是由电双层中近表面水分子秩序的破坏造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Surface Tension of a Charged Spherical Water Droplet

Dynamic Surface Tension of a Charged Spherical Water Droplet

Dynamic Surface Tension of a Charged Spherical Water Droplet

In asymptotic calculations of the first order of smallness in the dimensionless amplitude of water droplet oscillations, the effect of the dynamic surface tension on the oscillation parameters was investigated using a model of an ideal incompressible liquid. It was shown that the effect of the dynamic surface tension strongly manifests itself at frequencies of external influences that are inversely proportional to the water relaxation time. At such frequencies, under the action of external influences, the electrical double layer is destroyed (the ordering of water molecules in the near-surface layer is disrupted). As a result, the free energy of the surface increases, and so does the liquid surface tension. The dynamic surface tension affects the acoustic radiation from the droplet by altering the coefficient of surface tension. The contribution to the electromagnetic radiation of the oscillating droplet is made by the disruption of the order of near-surface water molecules in the electrical double layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信