{"title":"非磁性导电材料在可变传导电流作用下的相对脆导率的计算估算","authors":"M. I. Baranov","doi":"10.3103/S1068375524020029","DOIUrl":null,"url":null,"abstract":"<p>A special case of equality of the conduction current density and the displacement current density in a homogeneous nonmagnetic conducting medium was used to consider the results of approximate calculation estimation of the relative permittivity ε<sub><i>r</i></sub> of nonmagnetic conducting materials (metals and alloys), which are extensively used in electrical power engineering, electric power industry, and high-voltage pulse technology under the influence of variable (pulsed) electric currents and electromagnetic fields (EMF) with various amplitude–time parameters. It was demonstrated that, in the investigated case, at low frequencies <i>f</i><sub>0</sub> of conduction current and EMF (at a frequency on the order of 10<sup>2</sup> Hz) in the range of extremely low-frequency electromagnetic waves (EMW), the materials under consideration exhibit extremely high values of the electrophysical parameter ε<sub><i>r</i></sub> (on the order of 10<sup>15</sup>). For extremely high frequencies <i>f</i><sub>0</sub> of current and EMF (at a frequency on the order of 5 × 10<sup>13</sup> Hz) in the infrared range of EMW, these conducting materials are characterized by ε<sub><i>r</i></sub> values on the order of 10<sup>2</sup>–10<sup>4</sup>, and in terms of the electrophysical parameter ε<sub><i>r</i></sub>, they approach solid dielectrics and ferroelectrics.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"149 - 155"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation Estimation of the Relative Permittivity of Nonmagnetic Conducting Materials under the Action of Variable Conduction Current\",\"authors\":\"M. I. Baranov\",\"doi\":\"10.3103/S1068375524020029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A special case of equality of the conduction current density and the displacement current density in a homogeneous nonmagnetic conducting medium was used to consider the results of approximate calculation estimation of the relative permittivity ε<sub><i>r</i></sub> of nonmagnetic conducting materials (metals and alloys), which are extensively used in electrical power engineering, electric power industry, and high-voltage pulse technology under the influence of variable (pulsed) electric currents and electromagnetic fields (EMF) with various amplitude–time parameters. It was demonstrated that, in the investigated case, at low frequencies <i>f</i><sub>0</sub> of conduction current and EMF (at a frequency on the order of 10<sup>2</sup> Hz) in the range of extremely low-frequency electromagnetic waves (EMW), the materials under consideration exhibit extremely high values of the electrophysical parameter ε<sub><i>r</i></sub> (on the order of 10<sup>15</sup>). For extremely high frequencies <i>f</i><sub>0</sub> of current and EMF (at a frequency on the order of 5 × 10<sup>13</sup> Hz) in the infrared range of EMW, these conducting materials are characterized by ε<sub><i>r</i></sub> values on the order of 10<sup>2</sup>–10<sup>4</sup>, and in terms of the electrophysical parameter ε<sub><i>r</i></sub>, they approach solid dielectrics and ferroelectrics.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 2\",\"pages\":\"149 - 155\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524020029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Calculation Estimation of the Relative Permittivity of Nonmagnetic Conducting Materials under the Action of Variable Conduction Current
A special case of equality of the conduction current density and the displacement current density in a homogeneous nonmagnetic conducting medium was used to consider the results of approximate calculation estimation of the relative permittivity εr of nonmagnetic conducting materials (metals and alloys), which are extensively used in electrical power engineering, electric power industry, and high-voltage pulse technology under the influence of variable (pulsed) electric currents and electromagnetic fields (EMF) with various amplitude–time parameters. It was demonstrated that, in the investigated case, at low frequencies f0 of conduction current and EMF (at a frequency on the order of 102 Hz) in the range of extremely low-frequency electromagnetic waves (EMW), the materials under consideration exhibit extremely high values of the electrophysical parameter εr (on the order of 1015). For extremely high frequencies f0 of current and EMF (at a frequency on the order of 5 × 1013 Hz) in the infrared range of EMW, these conducting materials are characterized by εr values on the order of 102–104, and in terms of the electrophysical parameter εr, they approach solid dielectrics and ferroelectrics.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.