{"title":"广义 N 中心问题的混沌现象","authors":"Stefano Baranzini, Gian Marco Canneori","doi":"10.1007/s00205-024-01981-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study a class of singular dynamical systems which generalise the classical <i>N</i>-centre problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface. We investigate the existence of topological conjugation with the archetypal chaotic dynamical system, the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any collision regularisation. For any sufficiently large value of the energy, we prove that the generalised <i>N</i>-centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature is negative, we construct chaotic invariant subsets.\n</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01981-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Chaotic Phenomena for Generalised N-centre Problems\",\"authors\":\"Stefano Baranzini, Gian Marco Canneori\",\"doi\":\"10.1007/s00205-024-01981-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a class of singular dynamical systems which generalise the classical <i>N</i>-centre problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface. We investigate the existence of topological conjugation with the archetypal chaotic dynamical system, the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any collision regularisation. For any sufficiently large value of the energy, we prove that the generalised <i>N</i>-centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature is negative, we construct chaotic invariant subsets.\\n</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-01981-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01981-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01981-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一类奇异动力系统,它将天体力学的经典 N 中心问题推广到配置空间为黎曼曲面的情况。我们研究了与典型混沌动力系统伯努利位移的拓扑共轭的存在性。在提供无穷多个几何上不同且无碰撞的周期性解之后,我们将它们编码为双无限符号序列。在没有任何碰撞正则化的情况下,我们得到的解是穿刺表面上合适的自由同调类中莫珀图伊函数的最小值。对于任何足够大的能量值,我们都能证明广义 N-中心问题具有符号动力学特性。此外,当 Jacobi-Maupertuis 度量曲率为负值时,我们构建了混沌不变子集。
Chaotic Phenomena for Generalised N-centre Problems
We study a class of singular dynamical systems which generalise the classical N-centre problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface. We investigate the existence of topological conjugation with the archetypal chaotic dynamical system, the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any collision regularisation. For any sufficiently large value of the energy, we prove that the generalised N-centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature is negative, we construct chaotic invariant subsets.