基于亚氧化钛的材料的物理化学和电化学性质

IF 0.9 Q3 Engineering
O. B. Shmychkova, V. A. Knysh, T. V. Luk’yanenko, A. B. Velichenko
{"title":"基于亚氧化钛的材料的物理化学和电化学性质","authors":"O. B. Shmychkova,&nbsp;V. A. Knysh,&nbsp;T. V. Luk’yanenko,&nbsp;A. B. Velichenko","doi":"10.3103/S106837552402011X","DOIUrl":null,"url":null,"abstract":"<p>The influence of the synthesis conditions on the surface morphology, phase composition, and electrocatalytic activity of materials in oxygen and hydrogen evolution reactions was investigated. For instance, the slopes in the potential verses the logarithm of the current density dependencies during oxygen evolution were 221 and 109 mV/dec for TiO<sub>2</sub> nanotubes and platinum-coated layers, respectively. In the latter case, small deviations may be attributed to the structural heterogeneity of the material or the developed surface of the coating. As for pristine TiO<sub>2</sub> nanotubes, an atypical Tafel slope was observed, almost twice the theoretical value, indicating the presence of a semiconductor component in the electrode capacitance. Studies showed that the materials are n-type semiconductors. The cathodic polarization stage leads to the formation of titanium suboxides in the nanotube recovery phase, contributing to an increase in the material electrical conductivity. This also allows for the creation of a porous developed surface matrix for the electrodeposition of catalytic metal layers. Tafel slopes were calculated for the investigated materials in the hydrogen evolution reaction. For TiO<sub>2</sub> nanotubes, a slope of 175 mV/dec was observed. The material surface was partially blocked by hydroxides, resulting in a low number of active centers for the hydrogen evolution, and the polarization curve had a steep slope. In the case of TiO<sub>2</sub> nanotubes coated with a platinum layer, a high number of cationic vacancies in the matrix and a deficit of oxygen ions facilitated the mobility of platinum atoms, leading to the emergence of a large number of active centers for the hydrogen evolution. As a result, the Tafel slope of the polarization curve was found to be 30 mV/dec.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"232 - 240"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides\",\"authors\":\"O. B. Shmychkova,&nbsp;V. A. Knysh,&nbsp;T. V. Luk’yanenko,&nbsp;A. B. Velichenko\",\"doi\":\"10.3103/S106837552402011X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of the synthesis conditions on the surface morphology, phase composition, and electrocatalytic activity of materials in oxygen and hydrogen evolution reactions was investigated. For instance, the slopes in the potential verses the logarithm of the current density dependencies during oxygen evolution were 221 and 109 mV/dec for TiO<sub>2</sub> nanotubes and platinum-coated layers, respectively. In the latter case, small deviations may be attributed to the structural heterogeneity of the material or the developed surface of the coating. As for pristine TiO<sub>2</sub> nanotubes, an atypical Tafel slope was observed, almost twice the theoretical value, indicating the presence of a semiconductor component in the electrode capacitance. Studies showed that the materials are n-type semiconductors. The cathodic polarization stage leads to the formation of titanium suboxides in the nanotube recovery phase, contributing to an increase in the material electrical conductivity. This also allows for the creation of a porous developed surface matrix for the electrodeposition of catalytic metal layers. Tafel slopes were calculated for the investigated materials in the hydrogen evolution reaction. For TiO<sub>2</sub> nanotubes, a slope of 175 mV/dec was observed. The material surface was partially blocked by hydroxides, resulting in a low number of active centers for the hydrogen evolution, and the polarization curve had a steep slope. In the case of TiO<sub>2</sub> nanotubes coated with a platinum layer, a high number of cationic vacancies in the matrix and a deficit of oxygen ions facilitated the mobility of platinum atoms, leading to the emergence of a large number of active centers for the hydrogen evolution. As a result, the Tafel slope of the polarization curve was found to be 30 mV/dec.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 2\",\"pages\":\"232 - 240\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S106837552402011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106837552402011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了合成条件对氧气和氢气进化反应中材料的表面形态、相组成和电催化活性的影响。例如,TiO2 纳米管和铂涂层在氧进化过程中的电位与电流密度对数关系的斜率分别为 221 和 109 mV/dec。在后一种情况下,微小的偏差可能归因于材料结构的异质性或涂层表面的发达程度。至于原始的二氧化钛纳米管,观察到一个非典型的塔菲尔斜率,几乎是理论值的两倍,表明电极电容中存在半导体成分。研究表明,这些材料是 n 型半导体。阴极极化阶段导致在纳米管恢复阶段形成钛亚氧化物,从而提高了材料的导电性。这样还能形成多孔发达的表面基质,用于电沉积催化金属层。在氢进化反应中,对所研究材料的塔菲尔斜率进行了计算。观察到二氧化钛纳米管的斜率为 175 mV/dec。材料表面部分被氢氧化物堵塞,导致氢演化的活性中心数量较少,极化曲线的斜率较陡。在涂有铂层的二氧化钛纳米管中,基体中大量的阳离子空位和氧离子的缺乏促进了铂原子的流动,从而产生了大量的氢演化活性中心。因此,极化曲线的塔菲尔斜率为 30 mV/dec。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides

Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides

Physicochemical and Electrochemical Properties of Materials Based on Titanium Suboxides

The influence of the synthesis conditions on the surface morphology, phase composition, and electrocatalytic activity of materials in oxygen and hydrogen evolution reactions was investigated. For instance, the slopes in the potential verses the logarithm of the current density dependencies during oxygen evolution were 221 and 109 mV/dec for TiO2 nanotubes and platinum-coated layers, respectively. In the latter case, small deviations may be attributed to the structural heterogeneity of the material or the developed surface of the coating. As for pristine TiO2 nanotubes, an atypical Tafel slope was observed, almost twice the theoretical value, indicating the presence of a semiconductor component in the electrode capacitance. Studies showed that the materials are n-type semiconductors. The cathodic polarization stage leads to the formation of titanium suboxides in the nanotube recovery phase, contributing to an increase in the material electrical conductivity. This also allows for the creation of a porous developed surface matrix for the electrodeposition of catalytic metal layers. Tafel slopes were calculated for the investigated materials in the hydrogen evolution reaction. For TiO2 nanotubes, a slope of 175 mV/dec was observed. The material surface was partially blocked by hydroxides, resulting in a low number of active centers for the hydrogen evolution, and the polarization curve had a steep slope. In the case of TiO2 nanotubes coated with a platinum layer, a high number of cationic vacancies in the matrix and a deficit of oxygen ions facilitated the mobility of platinum atoms, leading to the emergence of a large number of active centers for the hydrogen evolution. As a result, the Tafel slope of the polarization curve was found to be 30 mV/dec.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信