生物医学研究的前景

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rita González-Márquez, Luca Schmidt, Benjamin M. Schmidt, Philipp Berens, Dmitry Kobak
{"title":"生物医学研究的前景","authors":"Rita González-Márquez, Luca Schmidt, Benjamin M. Schmidt, Philipp Berens, Dmitry Kobak","doi":"10.1016/j.patter.2024.100968","DOIUrl":null,"url":null,"abstract":"<p>The number of publications in biomedicine and life sciences has grown so much that it is difficult to keep track of new scientific works and to have an overview of the evolution of the field as a whole. Here, we present a two-dimensional (2D) map of the entire corpus of biomedical literature, based on the abstract texts of 21 million English articles from the PubMed database. To embed the abstracts into 2D, we used the large language model PubMedBERT, combined with <em>t</em>-SNE tailored to handle samples of this size. We used our map to study the emergence of the COVID-19 literature, the evolution of the neuroscience discipline, the uptake of machine learning, the distribution of gender imbalance in academic authorship, and the distribution of retracted paper mill articles. Furthermore, we present an interactive website that allows easy exploration and will enable further insights and facilitate future research.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The landscape of biomedical research\",\"authors\":\"Rita González-Márquez, Luca Schmidt, Benjamin M. Schmidt, Philipp Berens, Dmitry Kobak\",\"doi\":\"10.1016/j.patter.2024.100968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The number of publications in biomedicine and life sciences has grown so much that it is difficult to keep track of new scientific works and to have an overview of the evolution of the field as a whole. Here, we present a two-dimensional (2D) map of the entire corpus of biomedical literature, based on the abstract texts of 21 million English articles from the PubMed database. To embed the abstracts into 2D, we used the large language model PubMedBERT, combined with <em>t</em>-SNE tailored to handle samples of this size. We used our map to study the emergence of the COVID-19 literature, the evolution of the neuroscience discipline, the uptake of machine learning, the distribution of gender imbalance in academic authorship, and the distribution of retracted paper mill articles. Furthermore, we present an interactive website that allows easy exploration and will enable further insights and facilitate future research.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.100968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

生物医学和生命科学领域的出版物数量急剧增长,以至于很难跟踪新的科学著作,也很难对整个领域的发展有一个总体的了解。在此,我们根据 PubMed 数据库中 2100 万篇英文文章的摘要文本,绘制了整个生物医学文献库的二维(2D)地图。为了将摘要嵌入二维地图,我们使用了大型语言模型 PubMedBERT,并结合了专为处理这种规模的样本而定制的 t-SNE。我们利用我们的地图研究了 COVID-19 文献的出现、神经科学学科的演变、机器学习的应用、学术作者性别不平衡的分布以及被撤回论文的分布。此外,我们还推出了一个互动网站,方便人们进行探索,并将有助于进一步深入了解和促进未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The landscape of biomedical research

The landscape of biomedical research

The number of publications in biomedicine and life sciences has grown so much that it is difficult to keep track of new scientific works and to have an overview of the evolution of the field as a whole. Here, we present a two-dimensional (2D) map of the entire corpus of biomedical literature, based on the abstract texts of 21 million English articles from the PubMed database. To embed the abstracts into 2D, we used the large language model PubMedBERT, combined with t-SNE tailored to handle samples of this size. We used our map to study the emergence of the COVID-19 literature, the evolution of the neuroscience discipline, the uptake of machine learning, the distribution of gender imbalance in academic authorship, and the distribution of retracted paper mill articles. Furthermore, we present an interactive website that allows easy exploration and will enable further insights and facilitate future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信