西摩 6 流定理的另一个证明

Pub Date : 2024-04-25 DOI:10.1002/jgt.23091
Matt DeVos, Jessica McDonald, Kathryn Nurse
{"title":"西摩 6 流定理的另一个证明","authors":"Matt DeVos,&nbsp;Jessica McDonald,&nbsp;Kathryn Nurse","doi":"10.1002/jgt.23091","DOIUrl":null,"url":null,"abstract":"<p>In 1981 Seymour proved his famous 6-flow theorem asserting that every 2-edge-connected graph has a nowhere-zero flow in the group <span></span><math>\n \n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>×</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math> (in fact, he offers two proofs of this result). In this note, we give a new short proof of a generalization of this theorem where <span></span><math>\n \n <mrow>\n <msub>\n <mi>Z</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>×</mo>\n \n <msub>\n <mi>Z</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math>-valued functions are found subject to certain boundary constraints.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23091","citationCount":"0","resultStr":"{\"title\":\"Another proof of Seymour's 6-flow theorem\",\"authors\":\"Matt DeVos,&nbsp;Jessica McDonald,&nbsp;Kathryn Nurse\",\"doi\":\"10.1002/jgt.23091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1981 Seymour proved his famous 6-flow theorem asserting that every 2-edge-connected graph has a nowhere-zero flow in the group <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>Z</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow></math> (in fact, he offers two proofs of this result). In this note, we give a new short proof of a generalization of this theorem where <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>Z</mi>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>Z</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow></math>-valued functions are found subject to certain boundary constraints.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1981 年,西摩证明了他著名的 6 流定理,断言每个 2 边连接的图在群中都有一个无处为零的流(事实上,他对这一结果提供了两个证明)。在本注释中,我们给出了这一定理广义化的一个新的简短证明,在此定理中,-值函数是在某些边界约束条件下找到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Another proof of Seymour's 6-flow theorem

In 1981 Seymour proved his famous 6-flow theorem asserting that every 2-edge-connected graph has a nowhere-zero flow in the group Z 2 × Z 3 (in fact, he offers two proofs of this result). In this note, we give a new short proof of a generalization of this theorem where Z 2 × Z 3 -valued functions are found subject to certain boundary constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信