{"title":"部分立方体的立方多项式与其交叉图的小块多项式之间的关系","authors":"Yan-Ting Xie, Yong-De Feng, Shou-Jun Xu","doi":"10.1002/jgt.23099","DOIUrl":null,"url":null,"abstract":"<p>Partial cubes are the graphs which can be embedded into hypercubes. The <i>cube polynomial</i> of a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a counting polynomial of induced hypercubes of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, which is defined as <span></span><math>\n \n <mrow>\n <mi>C</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>x</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≔</mo>\n \n <msub>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>⩾</mo>\n \n <mn>0</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>α</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <msup>\n <mi>x</mi>\n \n <mi>i</mi>\n </msup>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <msub>\n <mi>α</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the number of induced <span></span><math>\n \n <mrow>\n <mi>i</mi>\n </mrow></math>-cubes (hypercubes of dimension <span></span><math>\n \n <mrow>\n <mi>i</mi>\n </mrow></math>) of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. The <i>clique polynomial</i> of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is defined as <span></span><math>\n \n <mrow>\n <mi>C</mi>\n \n <mi>l</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>x</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≔</mo>\n \n <msub>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>⩾</mo>\n \n <mn>0</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>a</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <msup>\n <mi>x</mi>\n \n <mi>i</mi>\n </msup>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <msub>\n <mi>a</mi>\n \n <mi>i</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> (<span></span><math>\n \n <mrow>\n <mi>i</mi>\n \n <mo>⩾</mo>\n \n <mn>1</mn>\n </mrow></math>) is the number of <span></span><math>\n \n <mrow>\n <mi>i</mi>\n </mrow></math>-cliques in <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mi>a</mi>\n \n <mn>0</mn>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow></math>. Equivalently, <span></span><math>\n \n <mrow>\n <mi>C</mi>\n \n <mi>l</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>x</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is exactly the independence polynomial of the complement <span></span><math>\n \n <mrow>\n <mover>\n <mi>G</mi>\n \n <mo>¯</mo>\n </mover>\n </mrow></math> of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. The <i>crossing graph</i> <span></span><math>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mi>#</mi>\n </msup>\n </mrow></math> of a partial cube <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is the graph whose vertices are corresponding to the <span></span><math>\n \n <mrow>\n <mi>Θ</mi>\n </mrow></math>-classes of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and two <span></span><math>\n \n <mrow>\n <mi>Θ</mi>\n </mrow></math>-classes are adjacent in <span></span><math>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mi>#</mi>\n </msup>\n </mrow></math> if and only if they cross in <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. In the present paper, we prove that for a partial cube <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <mi>C</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>x</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⩽</mo>\n \n <mi>C</mi>\n \n <mi>l</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msup>\n <mi>G</mi>\n \n <mi>#</mi>\n </msup>\n \n <mo>,</mo>\n \n <mi>x</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and the equality holds if and only if <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a median graph. Since every graph can be represented as the crossing graph of a median graph, the above necessary-and-sufficient result shows that the study on the cube polynomials of median graphs can be transformed to the one on the clique polynomials of general graphs (equivalently, on the independence polynomials of their complements). In addition, we disprove the conjecture that the cube polynomials of median graphs are unimodal.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"907-922"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relation between the cube polynomials of partial cubes and the clique polynomials of their crossing graphs\",\"authors\":\"Yan-Ting Xie, Yong-De Feng, Shou-Jun Xu\",\"doi\":\"10.1002/jgt.23099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial cubes are the graphs which can be embedded into hypercubes. The <i>cube polynomial</i> of a graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a counting polynomial of induced hypercubes of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, which is defined as <span></span><math>\\n \\n <mrow>\\n <mi>C</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≔</mo>\\n \\n <msub>\\n <mo>∑</mo>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>α</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msup>\\n <mi>x</mi>\\n \\n <mi>i</mi>\\n </msup>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>α</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is the number of induced <span></span><math>\\n \\n <mrow>\\n <mi>i</mi>\\n </mrow></math>-cubes (hypercubes of dimension <span></span><math>\\n \\n <mrow>\\n <mi>i</mi>\\n </mrow></math>) of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>. The <i>clique polynomial</i> of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is defined as <span></span><math>\\n \\n <mrow>\\n <mi>C</mi>\\n \\n <mi>l</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≔</mo>\\n \\n <msub>\\n <mo>∑</mo>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>a</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <msup>\\n <mi>x</mi>\\n \\n <mi>i</mi>\\n </msup>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>a</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> (<span></span><math>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>⩾</mo>\\n \\n <mn>1</mn>\\n </mrow></math>) is the number of <span></span><math>\\n \\n <mrow>\\n <mi>i</mi>\\n </mrow></math>-cliques in <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>a</mi>\\n \\n <mn>0</mn>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow></math>. Equivalently, <span></span><math>\\n \\n <mrow>\\n <mi>C</mi>\\n \\n <mi>l</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> is exactly the independence polynomial of the complement <span></span><math>\\n \\n <mrow>\\n <mover>\\n <mi>G</mi>\\n \\n <mo>¯</mo>\\n </mover>\\n </mrow></math> of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>. The <i>crossing graph</i> <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mi>#</mi>\\n </msup>\\n </mrow></math> of a partial cube <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is the graph whose vertices are corresponding to the <span></span><math>\\n \\n <mrow>\\n <mi>Θ</mi>\\n </mrow></math>-classes of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, and two <span></span><math>\\n \\n <mrow>\\n <mi>Θ</mi>\\n </mrow></math>-classes are adjacent in <span></span><math>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mi>#</mi>\\n </msup>\\n </mrow></math> if and only if they cross in <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>. In the present paper, we prove that for a partial cube <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <mi>C</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⩽</mo>\\n \\n <mi>C</mi>\\n \\n <mi>l</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msup>\\n <mi>G</mi>\\n \\n <mi>#</mi>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <mi>x</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> and the equality holds if and only if <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a median graph. Since every graph can be represented as the crossing graph of a median graph, the above necessary-and-sufficient result shows that the study on the cube polynomials of median graphs can be transformed to the one on the clique polynomials of general graphs (equivalently, on the independence polynomials of their complements). In addition, we disprove the conjecture that the cube polynomials of median graphs are unimodal.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"907-922\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23099\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A relation between the cube polynomials of partial cubes and the clique polynomials of their crossing graphs
Partial cubes are the graphs which can be embedded into hypercubes. The cube polynomial of a graph is a counting polynomial of induced hypercubes of , which is defined as , where is the number of induced -cubes (hypercubes of dimension ) of . The clique polynomial of is defined as , where () is the number of -cliques in and . Equivalently, is exactly the independence polynomial of the complement of . The crossing graph of a partial cube is the graph whose vertices are corresponding to the -classes of , and two -classes are adjacent in if and only if they cross in . In the present paper, we prove that for a partial cube , and the equality holds if and only if is a median graph. Since every graph can be represented as the crossing graph of a median graph, the above necessary-and-sufficient result shows that the study on the cube polynomials of median graphs can be transformed to the one on the clique polynomials of general graphs (equivalently, on the independence polynomials of their complements). In addition, we disprove the conjecture that the cube polynomials of median graphs are unimodal.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .