定向图中的循环因子

IF 0.9 3区 数学 Q2 MATHEMATICS
Zhilan Wang, Jin Yan, Jie Zhang
{"title":"定向图中的循环因子","authors":"Zhilan Wang,&nbsp;Jin Yan,&nbsp;Jie Zhang","doi":"10.1002/jgt.23105","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> be a positive integer. A <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor of an oriented graph is a set of disjoint cycles of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> that covers all vertices of the graph. In this paper, we prove that there exists a positive constant <span></span><math>\n \n <mrow>\n <mi>c</mi>\n </mrow></math> such that for <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> sufficiently large, any oriented graph on <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> vertices with both minimum out-degree and minimum in-degree at least <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow></math> contains a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math>. Additionally, under the same hypotheses, we also show that for any sequence <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math> with <span></span><math>\n \n <mrow>\n <msubsup>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>t</mi>\n </msubsup>\n \n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow></math> and the number of the <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n </mrow></math> equal to 3 is <span></span><math>\n \n <mrow>\n <mi>α</mi>\n \n <mi>n</mi>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>α</mi>\n </mrow></math> is any real number with <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo>&lt;</mo>\n \n <mi>α</mi>\n \n <mo>&lt;</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>3</mn>\n </mrow></math>, the oriented graph contains <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math> disjoint cycles of lengths <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math>. This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"947-975"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycle-factors in oriented graphs\",\"authors\":\"Zhilan Wang,&nbsp;Jin Yan,&nbsp;Jie Zhang\",\"doi\":\"10.1002/jgt.23105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> be a positive integer. A <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-cycle-factor of an oriented graph is a set of disjoint cycles of length <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> that covers all vertices of the graph. In this paper, we prove that there exists a positive constant <span></span><math>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow></math> such that for <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math> sufficiently large, any oriented graph on <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math> vertices with both minimum out-degree and minimum in-degree at least <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n \\n <mo>−</mo>\\n \\n <mi>c</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n </mrow></math> contains a <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-cycle-factor for any <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow></math>. Additionally, under the same hypotheses, we also show that for any sequence <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>n</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow></math> with <span></span><math>\\n \\n <mrow>\\n <msubsup>\\n <mo>∑</mo>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mi>t</mi>\\n </msubsup>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mi>n</mi>\\n </mrow></math> and the number of the <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>n</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow></math> equal to 3 is <span></span><math>\\n \\n <mrow>\\n <mi>α</mi>\\n \\n <mi>n</mi>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <mi>α</mi>\\n </mrow></math> is any real number with <span></span><math>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>&lt;</mo>\\n \\n <mi>α</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mn>3</mn>\\n </mrow></math>, the oriented graph contains <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow></math> disjoint cycles of lengths <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>n</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow></math>. This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"947-975\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设为正整数。有向图的循环因子是指覆盖图中所有顶点的长度不相交循环的集合。在本文中,我们证明了存在一个正常数,使得在足够大的情况下,对于任意......的顶点,任何同时具有最小出度和最小入度的有向图都至少包含一个-循环因子。此外,在同样的假设下,我们还证明,对于任意序列,且等于 3 的数为 ,其中为任意实数,且为 ,定向图包含长度为 的不相交循环。这个结论在某种意义上是最好的,并且完善了基瓦什和苏达科夫的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycle-factors in oriented graphs

Let k be a positive integer. A k -cycle-factor of an oriented graph is a set of disjoint cycles of length k that covers all vertices of the graph. In this paper, we prove that there exists a positive constant c such that for n sufficiently large, any oriented graph on n vertices with both minimum out-degree and minimum in-degree at least ( 1 2 c ) n contains a k -cycle-factor for any k 4 . Additionally, under the same hypotheses, we also show that for any sequence n 1 , , n t with i = 1 t n i = n and the number of the n i equal to 3 is α n , where α is any real number with 0 < α < 1 3 , the oriented graph contains t disjoint cycles of lengths n 1 , , n t . This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信