{"title":"定向图中的循环因子","authors":"Zhilan Wang, Jin Yan, Jie Zhang","doi":"10.1002/jgt.23105","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> be a positive integer. A <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor of an oriented graph is a set of disjoint cycles of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> that covers all vertices of the graph. In this paper, we prove that there exists a positive constant <span></span><math>\n \n <mrow>\n <mi>c</mi>\n </mrow></math> such that for <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> sufficiently large, any oriented graph on <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> vertices with both minimum out-degree and minimum in-degree at least <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow></math> contains a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math>. Additionally, under the same hypotheses, we also show that for any sequence <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math> with <span></span><math>\n \n <mrow>\n <msubsup>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>t</mi>\n </msubsup>\n \n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow></math> and the number of the <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n </mrow></math> equal to 3 is <span></span><math>\n \n <mrow>\n <mi>α</mi>\n \n <mi>n</mi>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>α</mi>\n </mrow></math> is any real number with <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>α</mi>\n \n <mo><</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>3</mn>\n </mrow></math>, the oriented graph contains <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math> disjoint cycles of lengths <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math>. This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycle-factors in oriented graphs\",\"authors\":\"Zhilan Wang, Jin Yan, Jie Zhang\",\"doi\":\"10.1002/jgt.23105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> be a positive integer. A <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-cycle-factor of an oriented graph is a set of disjoint cycles of length <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> that covers all vertices of the graph. In this paper, we prove that there exists a positive constant <span></span><math>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow></math> such that for <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math> sufficiently large, any oriented graph on <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math> vertices with both minimum out-degree and minimum in-degree at least <span></span><math>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mn>2</mn>\\n \\n <mo>−</mo>\\n \\n <mi>c</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mi>n</mi>\\n </mrow></math> contains a <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-cycle-factor for any <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow></math>. Additionally, under the same hypotheses, we also show that for any sequence <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>n</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow></math> with <span></span><math>\\n \\n <mrow>\\n <msubsup>\\n <mo>∑</mo>\\n \\n <mrow>\\n <mi>i</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mi>t</mi>\\n </msubsup>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mi>i</mi>\\n </msub>\\n \\n <mo>=</mo>\\n \\n <mi>n</mi>\\n </mrow></math> and the number of the <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>n</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow></math> equal to 3 is <span></span><math>\\n \\n <mrow>\\n <mi>α</mi>\\n \\n <mi>n</mi>\\n </mrow></math>, where <span></span><math>\\n \\n <mrow>\\n <mi>α</mi>\\n </mrow></math> is any real number with <span></span><math>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo><</mo>\\n \\n <mi>α</mi>\\n \\n <mo><</mo>\\n \\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mn>3</mn>\\n </mrow></math>, the oriented graph contains <span></span><math>\\n \\n <mrow>\\n <mi>t</mi>\\n </mrow></math> disjoint cycles of lengths <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>n</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mo>…</mo>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>n</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow></math>. This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let be a positive integer. A -cycle-factor of an oriented graph is a set of disjoint cycles of length that covers all vertices of the graph. In this paper, we prove that there exists a positive constant such that for sufficiently large, any oriented graph on vertices with both minimum out-degree and minimum in-degree at least contains a -cycle-factor for any . Additionally, under the same hypotheses, we also show that for any sequence with and the number of the equal to 3 is , where is any real number with , the oriented graph contains disjoint cycles of lengths . This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.